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In much of human reasoning, the form of reasoning is approximate rather than exact as in ‘A

red apple is ripe and this apple is more or less red. Then this apple is more or less ripe.’
L.A. Zadeh and E.H. Mamdani suggested methods for such a fuzzy reasoning as an
application of fuzzy set theory. The method involves an inference rule and a conditional
proposition which contains fuzzy concepts.
In this paper we point out that the consequence inferred by their methods does not always
fit our intuitions and we suggest the improved methods which fit our intuitions under several
criteria.
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1. Introduction

In the semantics of natural language there exist vast amounts of fuzzy concepts,
and we humans very often make such an inference whose antecedents and
consequences contain fuzzy concepts. Therefore, from the standpoint of artificial
intelligence, it seems that the formalization of inference methods for such
inferences are very important. However, such inferences cannot be made
sufficiently by the method which is based on classical two valued logic.

In order to make those inferences, L.A. Zadeh [4, 5] suggested an inference
rule called compositional rule of inference instead of classical inference rule, i.e.,
modus-ponens. Using this inference rule, he suggested some methods for the
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inference in which the antecedent is a conditional proposition containing fuzzy
concepts, and Mamdani [1] also has given a method for such an inference.

In this paper we point out that their methods do not give a consequence which
fits our intuitions, and suggest improved methods for such an inference.

2. Fuzzy sets—notation, terminology and basic operations

We shall make a brief summary of the concept of fuzzy sets and fuzzy relations
which will be needed in later sections.

Fuzzy sets. A fuzzy set A in a universe of discourse U is characterized by a
membership function p, which takes the value in the interval [0, 1], i.e.,
wa s U—T0,1]

When U is continuous, a fuzzy set A is represented as

A= [ patsu

U
When U is discrete, A is represented as

A= pa(u)fug+ pa(u)fuy+ - + NURT

Operations on fuzzy sets. If F and G are fuzzy sets in U, i.e.,

F= [ ueon, G- ot

u U

the union FU G, intersection FN G, bounded-sum FG G and complement 1 F
are fuzzy sets in U defined by

FUG= JMF(u)VMG(u)/u, FNG= qu(u)Aua(u)/u,

u U

FBG= J’l/\(pdp(u)%—pLG(u))/u, -F= Il‘up(u)f“,

u U

where v and A denote max and min, respectively.
If « is a real number, then F* is defined by'

= [t iu= [ ugm

u u

1 F2? and F°° may be used to approximate the effect of the linguistic modifiers very and more or less,
thus, very F = F2, more or less F = 5,
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Cartesian product. If F,, ..., F, are fuzzy sets in U, ..., U, respectively, then
the Cartesian product of F,, ..., F, is a fuzzy set in U; X - - - x U,, defined by

FoxcoxFm [ G as e A () )

U,x--xU,

Fuzzy relations. An n-ary fuzzy relation R in U, X - - - X U, (n=1) is a fuzzy set
in U;x---xU, and is defined by

R: j I‘LR(ul"">un)/(u1v"'3un)'

Uyxeoox U,

Composition of fuzzy relations. Let R and S be binary fuzzy relations in UXx W
and in Wx V, respectively, defined as

R- JMM%WW%W%

UxW

S= J s (w, v)/(w, v).

WxV

Then the composition of R and S is given by

Ros= [V [uelow)nmstw o)l o).

weW
UxV

If R is a unary fuzzy relation (that is, a fuzzy set) over W defined by
R= [ metww,
w
then the composition of R and S is defined as

RoS= J W\E/W[MR(W)/\ ws{(w, v)]/v.

\%2

3. Fuzzy conditional inference

In this chapter, we discuss the inference of the form:

Ant 1:If x is A then y is B
Ant2: xis A'. (1)

Cons: y is B'.
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where A, A’, B and B’ are fuzzy concepts. An example of this form of inference
is the following.

If a tomato is red then the tomato is ripe.
This tomato is very red.

This tomato is very ripe.

From now on, we call this form of inference as ‘fuzzy conditional inference’.

In the fuzzy conditional inference, if A=A' and A and B are non-fuzzy, then
(1) reduces to the classical modus-ponens of two-valued logic. But, if A, A" and B
are fuzzy and A# A’, then this form of inference can not be made by classical
modus-ponens of two-valued logic.

In order to make an inference in which fuzzy concepts are contained in the
antecedents, Zadeh [4, 5] formalized an inference rule named ‘compositional rule
of inference’, and he suggested methods for fuzzy conditional inference by
applying this inference rule.

The consequences inferred by his methods, however, do not always fit our
intuitions, so we suggest improved methods which fit our intuitions under
several criteria.

3.1. Compositional rule of inference

In our daily life we often make such an inference that, from the relationship
between some objects x and y and the information about x, we deduce some
information about y as a consequence. From this point of view, Zadeh suggested
an inference rule named compositional rule of inference (CRI for short).

Compositional rule of inference. If we translate the antecedent of the inference
which represents the relationship between some objects x and y into a suitable
fuzzy relation R and the antecedent which represents information about x into a
suitable unary fuzzy relation (that is, fuzzy set) A, then the consequence can be
obtained by the composition of A and R. This rule may be expressed in symbols

as
x is A.
x and y are R. 2)

y is AoR.

where the symbol o represents the composition of fuzzy relations.

3.2. Well-known methods for fuzzy conditional inference

In this section we present Zadeh’s methods [4, 5] and Mamdani’s method [1]
for fuzzy conditional inference whose form is

Ant 1: If x is A then y is B.
Ant2: xis A'. (3)

Cons: yis B'.
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where A and A’ are fuzzy concepts represented as fuzzy sets in the universe of
discourse U, and B is a fuzzy concept represented as fuzzy sct in the universe of
discourse V. Moreover, B’ is a consequence represented as fuzzy set in V.

In order to get a consequence B’ by applying CRI, the antecedents Ant 1 and
Ant 2 must be translated, respectively, into a binary fuzzy relation which is
expressed as R(A,(x), A,(y)) and a unary fuzzy relation which is expressed as
R(A,(x)). A;(x) and A,(y) are implied attributes of x and y which take values in
the universes of discourse U and V, respectively. R(A(x)) is given by

R(A(x))= A’ (4)
and for R(A,(x), A,(y)), the following three definitions were suggested by Zadeh
and Mamdani (Definitions D and Q) are by Zadeh [4, 5] and Definition 3 is by
Mamdani [1]).

Definition 1 (Maximin rule of conditional proposition).

R, (A(x), Ax(y))=(AXB)U(1AXYV) (5)

where x, U and — denote Cartesian product, union and complement, respec-
tively.

Definition 2 (Arithmetic rule of conditional proposition).

R, (A(x), Ax(y)) = (T AX V)B(UXB) (6)
where @ denotes bounded-sum.
Definition 3 (Mini operation rule of conditional proposition),

R.(A,(x), Ax(y))= AXB (7)

In the above definitions of R(A(x), A,(y)), the consequence R(A,(y)) (that
is, B’ in Cons of (3)) is obtained by applying CRI, i.e.,

R(Ay(y))= A’ [(AXB)U(1Ax U)] (8)

R(Ay(y) = A'[(mAXV)D (UxB)] )
or

R(Ax(y))=A'°(AXB) (10)

3.3. Some criteria for fuzzy conditional inference

In this section, in order to evaluate the methods by Zadeh and Mamdani
and to lay the foundation for formalizing improved methods, we shall consider
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what relations between antecedents and consequence are required in fuzzy
conditional inference and then set up several criteria.
In the fuzzy conditional inference

Ant 1: If x is A then y is B.
Ant 2: xis A’

Cons: yis B".

where A, B and A’ are fuzzy concepts represented by fuzzy sets, it seems,
according to our intuitions, that the satisfaction of the following criteria may be
required.

Criterion 1

Ant 1: If x is A then y 1s B.
Ant 2: x is A, (11)

Cons: y is B.

This criterion may be a quite natural demand.
Criterion II-1

Ant 1: If x is A then y is B.
Ant 2: x is very A, (12)

Cons: y is very B.

This criterion also seems to be a natural one. This will be consented from the
following example.

If a tomato is red then the tomato is ripe.
This tomato is very red.

This tomato is very ripe.

Criterion I1-2

Ant 1: If x is A then y is B.
Ant 2: x is very A. (13)

Cons: y is B.

This criterion has the consequence different from that of Criterion II-1. But when
in the Ant 1 there is not a strong casual relation between ‘x is A’ and ‘y is B’,
the satisfaction of Criterion II-2 will be permitted.



Fuzzy conditional inference 249

Criterion III

Ant 1; If x is A then y is B.
Ant 2: x is more or less A. (14)

Cons: v is more or less B.

This criterion may also be a natural one.

Criterion IV-1

Ant1: If x is A then y is B.
Ant2: x is not A. (15)

Cons: y is unknown.

This criterion asserts that when x is not A, any information about y can not be
deduced from Ant 1. Thus, this criterion may be thought to be quite natural, since
the fuzzy conditional proposition ‘If x is A then y is B’ does not make any
assertion when x is not A.

Criterion ITV-2

Ant1l: If x is A then y is B.
Ant2: x isnot A, (16)

Cons: y is not B.

The satisfaction of this criterion is demanded when the fuzzy conditional proposi-
tion:
If xis A then y is B

means tacitly
If x is A then y is B ¢lse y is not B.

Though this criterion may not be accepted in ordinary logic, in daily life we often
encounter the situation in which this criterion can hold.
From the above criteria we can classify the fuzzy conditional inferences into the
following four types:
Type 1: Criteria I, 1I-1, III, ITV-1 are satisfied
Type 2: Criteria 1, TI-2, 111, IV-1 are satisfied
Type 3: Criteria I, II-1, III, IV-2 are satisfied
Type 4: Criteria I, II-2, III, IV-2 are satisfied

a7

3.4. Reconsideration of the methods by Zadeh and Mamdani

As previously stated, for the following form of inference:

Antl: If x is A then y is B.
Ant2: x is A’ (18)

Cons: y is B'.
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PA

0.5

0

Fig. 1. Membership function p , (u) of fuzzy set A in U

Zadeh suggested that the B’ in Cons is obtained by
B, =A"°[(AXxB)U(AX V)] (19)
B,=A'°[(1AXV)®(UxB)] (20)
and Mamdani suggested that
B.=A'-(AXB), (21)

We shall show that Zadeh’s methods do not satisfy the criteria stated in Section
3.3 except Criterion IV-1 and that Mamdani’s method does not satisfy except
Criteria I and I1-2.

Now, we shall show what will B, B/, and B’ be when A’ in (19)-(21) is equal
to A, very A (= A%, more orless A (= A°) ornot A (= 1 A), where fuzzy sets A
in U and B in V are given as in Fig. 1 and Fig. 2, respectively.

3.4.1. The case of maximin rule
Let A’ be A, then B/, becomes as follows using (19):

B,=A [(AXB)U(1AX V)]

= [matree | (aon @)V (- pa) o)

U Uxv
= [ Va0 A (a1 (0D (1= a G 2
Hg

0.5

0 v

Fig. 2. Membership function pg(v) of fuzzy set B in V
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Sp(Hp(U))
1} pp(v) =1
s=me= (V) = 0.8
0.5t pp(V) = 0.5
i N Pp(v) = 0.3
pp(v) = 0.1
0, .
0 0.5 1 uA(u)
Fig. 3. S, (4 (u)) of (23)
Now, let
S (pa(U)) = pa @A ((pa (W A pp (V) v (1= pg (W) (23)
The value S, (wa(u)) with a parameter ug(v) is shown in Fig. 3. In Fig. 3, if
pe(©)=0.3, S, (pra(u)) is shown by ----- , and if pg(v)=0.8, S, (na(u)) be-
comes what is shown by —-——, and so on. In Fig. 1, u, (u) takes all values in the
unit interval [0, 1] according to u varying all over U. Thus from Fig. 3 we have
pp(v) ----- up(v)=0.5
= 24
Y Suluay={oer T B0 (29)
Therefore, from (22) and (24) we have
Br= [V, Suleatolrs (25)

A\

and the membership function of B/, is shown in Fig. 4.
From Fig. 4, B!, # B is obtained, and thus it is shown that Criterion I is not
satisfied.

0.5

0

Fig. 4. Membership function of B/, when A’=A
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Sp(Hafun)
1F pplv) =1
v)=0,7
Pi(u) \ "3
0.5 pp{v) =0.5
£ Y
7
_____ = pplv) =0.3
pp(v) =0.1
0 2 P
0 0.5 1 pa

Fig. 5. S’ (114 (W) of (27)

Second, suppose A’ =very A(=A?), then
B!, =A% [(AXB)U(DAX V)]

= [raenes | (ualn s @)v (1= ur @) )

\'2 UxV
= J VA AL(wa (W) A s () v (1= pa W)/ (26)
Now, let
Stlpa (W) = wi() A [(ra (U) A pp (0) v (1= pau)]. 27
The value S/, (u(u)) with a parameter ug(v) is depicted as in Fig. 5. Thus,
pp(v) ----- g (v) =3 _2\/§
Shalpa =
V Shlma@)=q | o s (28)
S5 e ()=
Therefore,
Br= | V. Shleatore 29)

and the membership function of B, is shown in Fig. 6. Hence from Fig. 6, we can

see
B! . #very B

B!, #B.
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Fig. 6. Membership function of B’, when A’=very A

This shows that both Criterion II-1 and Criterion II-2 are not satisfied.

In a similar way, when A’ =more or less A (=A°®), the membership function
of B!, will be as in Fig. 7. From Fig. 7, B/, # more or less B is obtained and thus
Criterion III is not satisfied.

Finally we shall show that Criterion IV-1 is satisfied when A’'=not A. Let
A'=not A (=7 A), then

B, =(1A)°[(AXB)U(—AXV)]

= [1-maee | Gaatnms(e)v - paGI@ 0

u UxvVv
= [ M0 ) AT )2 1 0D (1= e )T (30)
Vv
Now, from Fig. 1, there exists u € U which makes u,(u) =0, so that

(30)= [1ALOA kp @) v 10

= Jl/v

= unknown.

This shows that Criterion IV-1 is satisfied.

3 more or less B
al ) \f/\

//‘/' ‘\\

SN
w

4

l/ 3
O lll '

Fig. 7. Membership function of B/, when A’=more or less A

v

\
ki
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Since Criterion IV-1 is inconsistent with Criterion IV-2, it is clear that Criterion
IV-2 is not satisfied.

3.4.2. The case of arithmetic rule
Suppose that A'= A* (a >0), then the consequence B/ is obtained as follows:

B,= A%+[(mA x V)®(U x B)]

= [waee [ 10 g+ s @0 )

U UxV
= [V, [180A A= pa )+ a0V G1)

Now, let
Sa(pa(u), @)= pX (WA QAL — pa )+ pp(v)).

From Fig. 1, w.(u) takes all values in [0, 1] according to u varying over U. Then
from Fig. 8, when a =1,

V. Salisa ), D=V pa (A (LA (1= e (0)+ 1 (0))

_1+pp(v)
S

Hence

B,= J u\E/USa(”‘A(u)s /v

v

- J —”’;B(”) [ (32)

\'4

and the membership function of BZ, that is, (1+ ug(v))/2, is shown in Fig. 9.
From Fig. 9, B,+# B and so it is shown that Criterion I is not satisfied.
When a =2, that is, A'=very A (=A?), we have

V. Salpa(u),2)= u\E/Uui(u) AAAQ = pa(u)+ pg(v))

_ 34 2up(v)—V5+4pp(v)
5 .

Thus

(33)

B = J’ 3+2MB(U)*2\/5+4MB(U)/U'

v



Fuzzy conditional inference 255

1 k=< IAU~ g +1)
1AL - pw) +0.7)
ey Ha
N - N
0.5, o by
05 | W Y IAQL - 0.5
3—2/'5" ....................
p‘Tu) 1A(1 - pA(u)+0.3)
'y
A )
Ha 1A - W +0.0)
0
* T
0 0.5 1 A

Fig. 8. wa(w), pa(), p&5(w) and 1A (1= pa () + g (v))

Hence
By [ui)o=veryB (34)
B.# [un()o =B (35)

The membership functions of B/, very B and B are shown in Fig. 10. These show
that Criteria II-1 and II-2 are not satisfied.
When o =0.5, that is, A’=more or less A (=A%%),
V. Salba(),0.5)= V. u83(w) A (LA (L= pa () + g (0)))

:fl+\/5+4pd3(v)

2

0.5

0

Fig. 9. Membership function of B when A’=A
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Thus
b= J—1+J5;4u3(v)/v 36)
# Ju%‘s(v)/u
(= l:lore or less B). (37)

This shows that Criterion III is not satisfied. The membership function of B/,
when A'= A% (=more or less A) is shown in Fig. 11.

Finally we shall show that Criterion IV-1 is satisfied.

Suppose A'=neot A (=—1A), then

B, =(11A)°[(1A X V)B(UxB)]

= [ VA= @) AT A )+ @D

IA[IA(1+ pg(v)]/v

1/v

St < <

= unknown. (38)

This shows that Criterion IV-1 is satisfied. Note that this criterion cannot be
satisfied if p,(u)>0 for all ue U.

7
0.5[ 7y "
[ i~ . \ \* more or Jess B
1
[/ \)
5 . v
0 r ‘i

Fig. 11. Membership functions of B/, (when A’=more or less A), B and more or less B
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3.4.3. The case of mini operation rule
First, suppose A'= A®, then

B.=A“°(AXB)

= J’M;(u)/uo J ta () A pp(v)/ (4, v)

U UxVv

= [V, #300A A A s @ (39)

v

From Fig. 1, there exists u € U which makes p, (u)=1. Thus

(39)= J IA(Apg(0)/v

v

= J“’B (v)/v

= B. (40)

This shows that Criteria I and II-2 are satisfied, but Criteria II-1 and III are not
satisfied.

Second, let A'=not A, then
t=(1A)°(AxB)

[1-maue [ a0 s @ )

Il

[9) UxVv
= [, 0= ma ) A a7 (010

05/v ----- wg(v)=0.5

Il

pe()fv ----- we(v) <0.5. (41)

This shows that Criteria IV-1 and I'V-2 are not satisfied.
It is interesting to note that when A’=unknown (= U), we have

B;=J1/u° j o () A by (0)/(1, 0)

UxVv

I

e, e — T

u\E/U [1Apa(u) A pg(0)]/v

pg(v)/v =B,

This consequence can not be accepted according to our intuitions.
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Above discussions show that using the methods (Zadeh’s methods and Mam-
auani’s method), almost all criteria stated in Section 3.3 can not be satisfied and it
may be clear that consequences inferred by these methods do not always fit our
intuitions.

4. Formalization of improved methods

In this chapter, we present new methods for each type of fuzzy conditional
inference which satisfy criteria stated in Section 3.3. The difference between the
new and previous methods are the definition of fuzzy relations translated from
fuzzy conditional proposition.

4.1. Basic consideration

By the arithmetic rule of conditional proposition defined by Zadeh, the fuzzy
conditional proposition

P=1If x is A then y is B
is translated into the fuzzy relation:
R, (A (x), Ax(y) = (1 AX V)®(UXB)

= [ 1A= e s o).

UxV
In this fuzzy relation, the membership function
TA(L—palu)+ pg(v))

is what is obtained by Yukasiewicz’s definition of material implication in X logic,
that is,
v(P— Q)=1A(1-v(P)+0v(Q))

where v(P — Q), v(P) and v(Q) denote the truth values of propositions P — Q, P
and Q, respectively. Thus this definition may be viewed as an adaptation of
material implication in.k, logic to fuzzy conditional proposition. By paying an
attention to this fact, R,(A,(x), A,(y)) may be represented as follows.

R.(A(x), Ax(y) = (1 AX V)®(U % B)

_ j 1A (1= a (1) + g (), ©)

Uxv

= J ;LA(M)T) IJ«B(U)/(u, v)

= (AX V)5 (UXB) “2)

where — denotes the material implication in .k, logic.
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In this section, we discuss what properties are required to the implication in
order to satisfy Criterion I stated in Section 3.3 in the case where we adapt the
implication of other many-valued logic systems to the definition of fuzzy relations.

For the fuzzy conditional proposition P: If x is A then y is B, let fuzzy sets A
of U and B of V be given as

A= [ paiu

u

B= Jua(v)/v.

In general, fuzzy conditional proposition P may be translated into a binary fuzzy
relation R(A;(x), A,(y)) by adopting an implication of a many-valued logic
system, i.e.,

R(A;(x), Ay(y))=A X V— UxB

- | Ba = ) v @3)

UxV

where the value of u,(u)— pg(v) is defined according to an employed logic

system.
Now suppose R(A,(x))= A, then we can obtain the consequence R(A,(y)) by
applying CRI to R(A,(x)) and R(A,(x), A,(y)). Thus,

R(Ax(y))= A°R(A(x), Ax(y))

- [iate | wa— paiw v

= [V, a0 A (a0 = (D (44)

In order that Criterion I is satisfied, that is, R(A,(y)) = B, the equality

V. Lira ) 2 (e () = pi (0))]= s (0) (45)

must be satisfied for arbitrary v in V and in order that the equality (45) is
satisfied, it is necessary that the inequality

Boa (W) A (a (W) = pp(v) < pg(v)

holds for arbitrary u in U and v in V. Therefore, for the purpose that the
righthand of (44) is equal to B, we must employ as the implication of (43) an
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implication of the logic system in which at least the inequality
v[PA(P— Q)]=0(Q) (46)

is satisfied for arbitrary propositions P and Q.
Note that (46) is not satisfied in Ly (42).
The logic system of ‘standard sequence Sy’ in which the implication is defined as

1 ----- v(P)=v(Q)
P =
o(P—Q) {0 ----- 2(P)>v(Q)
and the logic system of ‘Gddelian sequence Gy’ in which implication is defined as
1 - v(P)=v(Q)
P—0)-{
PP D=40) oeee o(P)>0(Q)

satisfy the inequality (46) (see [2]).
On the bases of the above discussion we suggest improved methods in the next
section.

4.2 Formalization of improved methods

In this section we define new fuzzy relations for each type of fuzzy conditional
inferences in (17) and show that if we apply CRI to these fuzzy relations, criteria
stated in Section 3.3 are satisfied.

4.2.1 Method for fuzzy conditional inference of Type 1
The fuzzy conditional inference of Type 1 is the one whose form is

Ant 1: If x is A then y is B.
Ant 2: xis A'. (47)

Cons ; y is B'.

where A, B and A’ are fuzzy concepts represented as fuzzy sets in universes of
discourse U, V and U, respectively, and which requires the satisfaction of Criteria
I, 11-1, III and IV-1.

For this inference, if Ant 2 translates into a unary fuzzy relation

R(A(x))= A’ (48)

and Ant 1 translates into a binary fuzzy relation R,(A(x), A,(y)), which will be
defined in (52), then the consequence R(A,(y)) is obtained by applying CRI, i.e.,

R(A,(y)) = R(A(x))° R,(A;(x), Ax(y)). (49)

This R(A,(y)) is equal to B' in (47).
Now we shall give the definition of R {A,(x), A,(y)).

Definition 4.1. Let fuzzy sets A in U and B in V be

A= | pa)u (50)

B=|pug(v)/v (51)

e, Qe
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then R (A,(x), A,(y)) is defined by the following.
R (A(x), As(y))=AXV —— UXB

= J pea (W)/(u, v) — f wp (V)/(u, v)

UxV

UxV
= | a0~ e v (52)
UxVv
where
1----- pa(u) = pg(v)
—_ v)= 53
(i) > (o) = o T RS b ) (53)
This definition is based on the implication in Sy logic system, i.e.,
- v(P)=0v(Q)
“P*’Q*'t ----- v(P)>1(Q) c4

Next, we shall show that using this method, Criteria I, II-1, III and IV-1 are
satisfied under the following conditions (55), (56) and (57).> Let fuzzy sets A
in U and B in V be given as (50) and (51), respectively, and the following
condition be assumed

{pa(u) | ue Uy2{us(v)|ve v} (55)
AueclU us(u)=0, Fu'eU pa(u)=1 (56)
JueV ugv)=0, Jv'elU pg®)=1 (57)

and, as a general case, suppose R(A,(x))= A% (a>0), then (49) will be
R(A,(y)) = R(A(x))° Ry(A(x), Ax(y))

=A% (AxV——>UXB)

= [utme [ pat) = a0

U UxV

= [V p800 A (e ) > ma (o). (58)

v

Here, for each v in V, we can obtain two subsets U, and U, of U which satisfy
the following condition.

U,UU,=U, UNU,=9 (’59)
VueU, palu)<pp (v) (60)
YueU, wau)>ps(v) (61)

2 It is noted that we have discussed the methods by Zadeh and Mamdani under the same conditions.
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Then

(58)= I ué{hui(u)/v from (60)

\2

= Iug(v)/v from (55) and (60)

v
= B*.

This shows that when a=1 (A’=A), a=2 (A’=A? and a=0.5 (A'= A",
Criteria I, II-1 and III are satisfied, respectively.
Next, suppose R(A;(x))=not A, then (49) becomes

R(Ay(y) = R(A,(x))° R;(A;(x), Ax(y))

=(11A)*(AX V —> UxB)

= J.l‘uA(u)/uo J poa () —> pg (0)/ (4, v)

UxV

U
= [ VO ia @) A a5 w0 ()

From the assumption (56) there exists u in U which makes w4 (u) = 0. Therefore

u\E/U[(l — s (W) A (pa(u) 35 HUB (v)]=1.
Thus,

(62)= Jl/v

= unknown. (63)
This shows that Criterion IV-1 is satisfied.

4.2.2. Method for the fuzzy conditional inference of Type 2

Fuzzy conditional inference of Type 2 is the one the form of which is the same
as (47) and which requires the satisfaction of Criteria I, II-2, III and IV-1.

For this inference, Ant 1 translates into binary fuzzy relation R,(A(x), A(y)),
which is defined below, and the consequence R(A,(y)) is obtained in the similar
way of the case of Type 1, i.e.,

R(As(y))= R(A(x))e Rg(Al(x)9 As(y))
= A" R (A (x), Ax(y))- (64)

The definition of R (A,(x), As(y)) is given by the following.

Definition 4.2. Let fuzzy sets A in U and B in V be the same as (50) and (51),
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respectively, then Ry (A (x), A,(y)) is defined as
R(A,(x), Ay(y)=Ax V-—> UxB

| a0 ) 0, (65)

where uxv
1 ----- ta(u)=<pg(v)

pa () == pp(v) = {MB(U) ————— ta () > pg (0).

This definition is viewed as an adoption of G6del’s definition of the implication
in Gy logic system, i.e.,

v(P— Q)=

(66)

{ r - v(P)=v(Q)
v(Q) ----- v(P)>v(Q).

We shall show that using this method, Criteria I, II-2, III and IV-TI are satisfied.
Let the conditions (55), (56) and (57) be satisfied and suppose R(A(x))= A"
(a>>0). Then we have (64) as

R(Ax(y)) = R(A,(x))° Ry (A(x), Ax(y))
=Aa°(A X VT) UxB)

= J’MA(M)/W J Ha () —> up(0)/(u, v)

UxVv

A () A (pa (1) — pg (v))/v. (67)

<;,Cj

Here, for each v in V, we can obtain two sets U, and U, which satisfy the
following conditions.

U1UU2: U, Ulm U2=¢ (68)

YueU, pa(u)<spp(v) (69)

VueU, pa(u)>ug(v). (70)
Therefore

67= [ (L, #30)v (B2 ARs@) o

mi(v)v [(ué{]zﬂ-i(“)>/\ uB(v)}/v

= [ () v Apg()/v
ua(v)/v—B"“ ---- a=1
U«B(U)/U‘ ----- a>1.

j
g
J
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This shows that when a=1, a=2 and a=0.5, Criteria I, II-2 and III are
satisfied, respectively,

Furthermore, the satisfaction of Criterion IV-1 can be shown in the similar way
in the case of Type 1.

4.2.3. Method for fuzzy conditional inference of Type 3

Fuzzy conditional inference of Type 3 is the one whose form is the same as (47)
and which demands the satisfaction of Criteria I, II-1, III and IV-2.

For this inference, Ant 1 translates into a binary fuzzy relation R (A(x),
A,(y)), which is defined below, and then the consequence R(A,(y)) is obtained by

R(A5(y)) = R(A(x)) ° Ry, (A4(x), Ax(y))
= A’o Ry (Ay(x), Ax(y))- (71)
R (A (x), Ay(y)) is obtained by the following.

Definition 4.3. Let fuzzy sets A in U and B in V be the same as (50) and (51),
respectively, then R (A,(x), A,(y)) is defined as follows.

Ry (A(x), A;(y)=(AXV—UXB)N(NAXV—= UX =1B) (72)

We shall show that using this method, Criteria I, II-1, ITT and V-2 are satisfied
under the conditions (55), (56) and (57).
Suppose R(A (x))=A* (a>0), then (71) becomes

R(A,(y))
= R(A(x))° R, (A(x), Ax(y))

=A®e[(AXV— UXB)N(1AX V—> Ux —1B)]

= (s [ (uat) = uste)

U UxXV

A= pa (W) — (1= pp (0))]/(u, v)

= [ Va0 AT ) = s )

v

AL = pa (W) — (1= ps ()TN v- (73)

Here, for each v in V there exist three sets U,, U, and Us which satisfy the
following conditions:

U,ulU,uUs;=U (74)
unu,=9 i,je{l, 2,3}, i#j (75)
VueU; pa(u)<pg(v) (76)
VueU, pa(u)=pg(v) 7

Vue U, pa(u) > pg(v). (78)
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Then

3= || v paeaa-pen|v| v waw | /o

\'2

|
J A OACYL
J

2

pa(v)/v

This shows that Criteria I, II-1 and III are satisfied.
Next, suppose R(A,(x))=not A, then the consequence R(A,(y)) is obtained by
the following.

R(A(y))
= R(A(x))° Ry, (Ay(x), Ax(y))

=(1A)[(AXV—>UxB)N(A XV —> UX 1B)]

= [1-ma@ree | (hat0) == uao)

U Uxv

AL = pa (W) — (1= pg (0))]/(u, v)

= J VO = pa ) A (pa () == s (0))

AL = pa(u)) — (- ug ()]0

= [y 0w [v] 1= wat0 | /o

= J(l_ ps(0)v (1= pg(v))/v

A\
J(l ps (V)0
B

=not B.

This indicates that Criterion IV-1 is satisfied.
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4.2.4. Method for fuzzy conditional inference of Type 4
Fuzzy conditional inference of Type 4 is the one the form of which is the same
as (47) and which demands the satisfaction of Criteria I, II-2, ITI and IV-2,
For this inference, Ant 1 translates into a binary fuzzy relation R, (A,(x),
A,(y)), which is defined below, and the consequence R(A,(y)) is obtained in the
similar way of the case of Type 1, i.e.,

R(AZ(Y)) = R(Al(x))o Rgg(Al(x)7 Az()’)) (79)
Now we shall give the definition of R, (A (x), A,(y)).

Definition 4.4. Let fuzzy sets A in U and B in V be as in (50) and (51), then
R, (A (x), Ay(y)) is defined by the following.

R (Ay(x), Ax(y)) = (A X V—-E—> UxB)N(mAX VT> Ux—B) (80)
Since the satisfaction of the Criteria I, IT-2, ITT and IV-2 can be shown in the
similar way of Type 3, we shall omit the proof.
We shall next give an example of using the method of fuzzy conditional
inference of Type 1.
Example 1. Let
U=V=0+1+2+34+4+5+6+7+8+9+10
A=small=1/0+0.8/1+0.6/2+0.4/3+0.2/4
B =middle=0.2/2+0.4/3+0.8/4+1/5+0.8/6+0.4/7+0.2/8
Then the fuzzy conditional proposition
If x is small then y is middle
translates into

R, (Ai(x), Ay(y)) =small X V-—— U X middle

0123456789 10
0fo 0 00010000 0
10000111000 0
210 0001 11000 0
310 001111100 0
4loo1 1111110 o0
=5t 111111111 1
611 111111111 1
71t 111111111 1
g8t 111111111 1
9|t 111111111 1
wlr 111111111 1]
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(1) Let R(A,(x))=small, then
R(A,(y))=smallo R (A;(x), Ay (y))
=0.2/2+0.4/3+0.8/4+1/5+0.8/6+0.4/7+0.2/8
= middle.
(2) When R(A,(x)) = very small,
R(Ax(y)) = (very small) e R,(A;(x), Ax(y))
= (small)®> R (A,(x), Ax(y))
=0.04/2+0.16/3+0.64/4+1/5+0.64/6+0.16/7+0.04/8
= (middle)®
= very middle.
(3) If R(A,(x))=mnot small, then
R(A5(y)) = (mot small) e R, (A,(x), Ax(y))
=0+14+2+3+4+5+6+7+8+9+10
=V
= unknown.

Stated in English, these inferences may be expressed as follows.

(1)  If x is small then y is middle.
x is small.

y is middle.

2) If x is small then y is middle.
x is very small,

y is very middle.

(3) If x is small then y is middle.
x is not small.

y is unknown.

4.3. Some properties of R, and R,

In this section, we describe some interesting properties of fuzzy relations R,
defined by (52) and R, defined by (65). Note that the fuzzy relations R,, and R,

defined by Zadeh does not have these properties the fuzzy relation R, has only

Property 2, and the fuzzy relation R. defined by Mamdani has only the following

Property 1.

Property 1. Let fuzzy conditional propositions P, P, and P, be given as
P,=1If xis A then y is B
P,=If y is B then z is C
P,=1If x is A then z is C
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where A, B and C are fuzzy concepts represented as the following fuzzy sets,

A= man B= @ = [uctnm.
U v w
Let R.(A,(x), Ax(y)), Ry(Ax(y), As(z)) and R,(A,(x), As(z)) be fuzzy relations
which are translated from P,, P, and P, using (52), respectively, and R, (A (x),
As(y), R (A,(y), As(z)) and R, (A (x), As(z)) be fuzzy relations translated from
P,, P, and P, using (65), respectively. Then, under the following conditions, i.e.,

{ua(w) |ue Ut 2{ug(v) | ve Vi2{uc(w)| we W} (81)
JuelU palu)=0, Fu'eU pau)=1
JueV pg(v)=0, Jv'eV ug)=1 (82)

IweW uc(w)=0, Iw'eW pcw)=1
the following equalities are satisfied.

R, (A(x), As(2)) = Ry(A1(x), Ax(y))° R (As(y), As(2)) (83)

R (A(x), As(z)) = R (Aq(x), Ax(y)) ° Ry (Ax(y), As(2)) (84)
This property may be illustrated as

P,=1If x is A then y is B & R (A (x), Ax(y))

P,=1f y is B then z is C < R (A,(y), A;5(2))

P,=1f x is A then z is C « R, (A (x), Ay(y))° R{(A(y), As(z))

Proof. We shall prove the equality (83).
R (A1(x), Ax(y))° R,(Ax(y), As(2))

[ a0 — s 0 [ ap @) bW W)

= [ Va0 = i (0D A (0 = e WY W), (85)

Now, let

S(v) = (pa (1) — pa (V) A (up (V) —— pe(w))
then

1---- MA(”)S“‘B(U)su‘C(W)
0 ----otherwise.

S(v)={

From the assumptions (81) and (82), whenever the inequality

pa(U)=<pc(w)
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holds, there exists some v in V which satisfies the inequality
pa(u) =< pg(v)=pc(w).
Therefore,

V S(v)=

veV

{1----MA(u)SuB(W)
0----pa () > ug(w)

and hence

@)= | V5w

UXW

= J I-"A(u) 'T) ”C(W)/(u’ W)

UxW

= R,(A,(x), As(2)).

This completes the proof of the equality (83).

The similar way is applicable to the proof of the equality (84).

Example 2. Let fuzzy conditional propositions P,, P, and P; be

P,=1If x is A then y is B.
P,=1f y is B then z is C.
P,=1If x is A then z is C.

and fuzzy sets A in U, B in V and C in W be given as
A=1/1+0.8/24+0.6/3+0.4/4+0.2/5
B=0.2/4+0.4/5+0.8/6+1/7
C=0.4/2+0.8/3+1/4+0.8/5+0.2/6

where
U=V=W=14+24+3+4+5+6+7.

Theﬂ, Rg(Al(x)s Az()’)), Rg(AZ(y)1 A3(Z)) and Rg(Al(x)’ A3(Z)) WhICh

translated from P,, P, and P, using (65) are obtained as follows.

4
0.2
0.2
0.2
0.2
1
1
1

Rg(Al(x), Az(}’)) =AX V——g—) UxB=

BN e NV, I NG US I NS

——0 OO0 O O
—_—_ O OoOoOOoON
——0 OO0 o oW

5

04 0.8

6

04 1
04 1

)

et

269

(86)

are

o Tl T s S S Y |
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Rg(A2(Y)> A3(Z)) =B X WT) Vx(C =

R,(Ay(x), A3(2))= AXW—UxC =

NNV RN W N

NN AN W=

OO0 O = e = =

-0 0 O OO -

2
1
1
1
1
1
0
0

FNINN

2
04
0.4
0.4
1

1
1
1

p»—-w»—xwr—i»ﬂw

o]

R e e O W

I e S VIR N Ny

— e e R e e N

—_ e e = = O N

=== = N

0.2
8 0.2

O = e = e = N

.8 0.2

coo
N NN

— i

Then, the composition of R,(A(x), A,(y)) and R,(A,(y), As(z)) leads to

Rg (Ay(x), Ax(y))e Ry (Ax(y), As(2))
04 08 1

0 0 0 02
000 02
0 0 0 02
=10 0 0 02
00 0 1
1111
1111
0 04 08 1
0 04 1 1
0 04 1 1
=fo 1 1 1
01 1 1
11 1 1
IS S B
= Ry (A(x), As(z))

This shows the satisfaction of the equality (84).

0
0
1

1
1
1

4 1
4 1

1

Sy

0.8 0.2
0.2
0.2
0.2
0.2

— e

1

1
1
1
1
1

—_——_—0 0 O OO

S OO O =

S O o R

ENIEN

Property 2. For the fuzzy conditional proposition P,

P,=1If x is A then y is B

and its contrapositive proposition P,, that is,

P,=1f y is not B then x is not A

[ B T e )
N

prt et sk ek ek ek ek

1 1
1 1
1 1
1 1
1 02
1 02
0.8 0.2

SO O M =

—_—0 oo O O

S OO O -
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where A and B are fuzzy sets given as

A= [uatone B= (o

U v

let R,(A;(x), Ax(y)) and R;(A,(y), A,(x)) be fuzzy relations which are translated
from P; and P, using (52), respectively. Then the following equation is satisfied.

R (Ax(y), A (x)) = Ri(A,(x), Ax(y)) (87)

where R.(A,(x), A,(y)) denotes the converse relation of R (A,(x), A,(y)). This
property can be expressed in symbol as

If x is A thenyis B— R (A,(x), Ax(y))
ﬂcontrapositive H converse
proposition relation
" If yisnot B then x ismot A — R (A,(y), Ay(x))

Note that R, of (65) does not satisfy this property.

Proof
R(A(x), Ax(y))=AXV — UXB
= J ta(u) —— pp()/(4, v)
Uxv
hence

RUA), A= | a0~ i /2, 1)

vVxU

_ j (1- a5 (1)) — (1= pa W)/, w)

vxU
=BXU—> VXA
= R,(Ax(y), Ay(x)).
This completes the proof of the equation (87).

Example 3. Let a fuzzy conditional proposition P; and its contradictive proposi-
tion P, be given as

P,=1f x is A then y is B.
P,=1f y is not B then x is not A.
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and let fuzzy sets A in U and B in V be given as
A=1/1+0.8/2+0.5/3+0.3/4

B=0.2/10+0.4/114+0.7/12+1/13
where
U=1+2+3+4+5

V=8+9+10+11+12+13.
Then R (Ay(x), Ax(y)) and R,(Ax(y), Aq(x)) are

8 9 10 11 12 13

1/0 00 0 0 1

20 00 0 0 1

R(A(x), A,(y))=AxV—UxB=3{0 0 0 0 1 1

a0 o0 1 1 1

S\ 11 1 1 1

1 23435

8/0 0 0 0 1

9fo0 0 0 0 1

1000 0 0 0 1

R,(Ax(y), Ay(x))=BxU~—Vx-1A=11L 0 0 0 1 1

' 120 0 1 1 1

13\ 11 11

Now,
1 23 45
8/0 0 0 0 1
9f0 0 0 0 1
- 1000 0 0 0 1
R(A(x), Ax0= 1110 0 0 1 1 ]=RAxy), Ax)

20 0 1 1 1
13\l 1 111

This shows that the equality (87) is satisfied.

5. Concluding remarks

In this paper we pointed out that the methods by Zadeh and Mamdani for the
fuzzy conditional inference do not give the consequences which fits our intuitions,
and gave improved methods which fit our intuitions under several criteria.

The inference form treated here, however, is only the following:

If x is A then y is B.
xis A’
y is B’
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Therefore, the formalization of inference methods for the more complicated form
of inference, such as

If xis A then y is B else y is C.

xis A'.

y is B

or
If xis A, and A, and---and A, then y is B.
x is Al and---and Al.

y is B".

would be the future subjects.
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