FUZZY SETS OF TYPE 2 UNDER ALGEBRAIC PRODUCT AND ALGEBRAIC SUM #### Masaharu Mizumoto Department of Management Engineering Osaka Electro-Communication University Neyagawa, Osaka 572, Japan and ### Kokichi Tanaka Department of Information and Computer Sciences Osaka University Toyonaka, Osaka 560, Japan The concept of fuzzy sets of type 2 has been proposed by L.A. Zadeh as an extension of ordinary fuzzy sets. A fuzzy set of type 2 can be defined by a fuzzy membership function the grade (or fuzzy grade) of which is taken to be a fuzzy set in the unit interval [0,1] rather than a point in [0,1]. This paper investigates the algebraic properties of fuzzy grades (that is, fuzzy sets of type 2) under the operations of algebraic product and algebraic sum which can be defined by using the concept of the extension principle and shows that fuzzy grades under these operations do not form such algebraic structures as a lattice and a semiring. Moreover, the properties of fuzzy grades are also discussed in the case where algebraic product and algebraic sum are combined with the well-known operations of join and meet for fuzzy grades and it is shown that normal convex fuzzy grades form a lattice ordered semigroup under meet, join and algebraic product. #### INTRODUCTION Recently, L.A. Zadeh (1975) has formulated the interesting concept of the extension principle by which a binary operation defined on a set X may be extended to fuzzy sets in X and defined the operations for fuzzy sets of type 2, fuzzy numbers and fuzzy linguistic logic. In Mizumoto and Tanaka (1976a) we discussed what kinds of algebraic In Mizumoto and Tanaka (1976a) we discussed what kinds of algebraic structures the grades (or fuzzy grades) of fuzzy sets of type 2 form under join (\square), meet (\square) and negation (\square), and showed that normal convex fuzzy grades form a distributive lattice and convex fuzzy grades form a commutative semiring under join and meet. In this paper we investigate the algebraic properties of fuzzy grades (or fuzzy sets of type 2) under the operations of algebraic product and algebraic sum which are defined by using the extension principle (Zadeh, 1975) and show that, unlike the operations of join and meet, fuzzy grades under algebraic product and algebraic sum do not constitute such algebraic structures as a lattice and a semiring. Furthermore, the properties of fuzzy grades are also discussed in the case where algebraic product and algebraic sum are combined with join and meet, and it is shown that normal convex fuzzy grades form a lattice ordered semigroup under meet, join and algebraic product. ## FUZZY GRADES We shall briefly describe the concept of fuzzy sets of type 2 and their operations of algebraic product and algebraic sum obtained using the extension principle. Fuzzy Sets of Type 2: A fuzzy set of type 2, A, in a universe of discourse X is characterized by a fuzzy membership function μ_A as $$\mu_{A}: X \longrightarrow [0, 1]$$ (1) where the value $\mu_A(x)$ is called a <u>fuzzy grade</u> and is a fuzzy set in the unit interval [0,1]. A fuzzy grade $\mu_A(x)$ is represented by $$\mu_{A}(x) = \int f(u)/u, \quad u \in [0, 1]$$ (2) where f is a membership function for the fuzzy grade $\mu_A(x)$ and is defined as $f: [0, 1] \longrightarrow [0, 1]$ [Example 1] Suppose that X = {Susie, Betty, Helen, Ruth, Pat} is a set of women and that A is a fuzzy set of type 2 of beautiful women in X. Then we may have > A = BEAUTIFUL = high/Susie + middle/Betty + low/Helen + not low/Ruth + very high/Pat, where the fuzzy grades labeled high, middle, ..., very high may be depicted as in Fig.1. We shall next define the operations of algebraic product and algebraic sum for fuzzy grades using the concept of the extension principle**. Let $\mu_B(x)$ and $\mu_B(x)$ be fuzzy grades for fuzzy sets of type 2, A and B, represented as $$\mu_{A}(x) = \int f(u)/u, \quad u \in [0, 1]$$ (4) $$\mu_{B}(x) = \int_{C} g(w)/w, \quad w \in [0, 1]$$ (5) Algebraic Product: AB $$\iff \mu_{AB}(x) = \mu_{A}(x) \cdot \mu_{B}(x)$$ Algebraic Sum: A+B $$\longleftrightarrow \mu_{A+B}(x) = \mu_A(x) + \mu_B(x) - \mu_A(x) \cdot \mu_B(x)$$ where the symbols \cdot , +, - represent arithmetic product, arithmetic sum, and arithmetic difference, respectively, and $\mu_A(x)$ and $\mu_B(x)$ are both in [0, 1]. ** Let $A=\int \mu_A(x)/x$ and $B=\int \mu_B(y)/y$ be ordinary fuzzy sets in X and let * be a binary operation on X. Then the operation * can be extended to fuzzy sets A and B by the following relation (the extension principle). $$A * B = (\int \mu_{A}(x)/x)*(\int \mu_{B}(y)/y)$$ $$= \int (\mu_{A}(x) \wedge \mu_{B}(y))/(x * y)$$ where Λ denotes min. ^{*} Algebraic product and algebraic sum performed on ordinary fuzzy sets A and B are defined as follows (Zadeh, 1965). Fig.1 Example of fuzzy grades Then the operations of algebraic product and algebraic sum for A and B are defined as follows by using the extension principle. ## Algebraic Product: AB $$\iff \mu_{AB}(x) = \mu_{A}(x) \cdot \mu_{B}(x)$$ $$= (\int f(u)/u) \cdot (\int g(w)/w)$$ $$= \int (f(u) \wedge g(w))/uw \qquad (6)$$ Algebraic Sum: A+B $$\iff \mu_{A+B}(x) = \mu_{A}(x) + \mu_{B}(x)$$ $$= \int (f(u) \wedge g(w))/(u + w)$$ $$= \int (f(u) \wedge g(w))/(u + w - uw) \quad (7)$$ The complement of fuzzy set of type 2 A is defined as Complement: $$\bar{A} \iff \mu_{\bar{A}}(x) = \exists \mu_{A}(x)$$ $$= \int f(u)/(1-u) \tag{8}$$ where Λ stands for min. We call the operations for fuzzy grades, that is, \bullet as algebraic product, + as algebraic sum, and \neg as negation hereafter. [Example 2] As a simple example, we shall execute the operation of algebraic product for discrete fuzzy grades μ_A and μ_B ($\mu_A(x)$ is abbreviated as μ_A for simplicity). Let μ_A and μ_B be as $$\mu_{A} = 0.5/0.2 + 1/0.4 + 0.8/0.6$$ (9) $\mu_{B} = 1/0.2 + 0.9/0.4 + 0.4/0.6$ (10) Then from (6) we have $\mu_{\mbox{\footnotesize{AB}}}$ as follows. Negation $\exists \mu_A$, algebraic product $\mu_A \cdot \mu_A$ and algebraic sum $\mu_A + \mu_A$ of fuzzy grade μ_A . Fig.2 Subnormal nonconvex fuzzy grade Fig.3 $\mu_{\mathbf{p}}$ and normal nonconvex fuzzy grade µ_C. $$\mu_{A} \cdot \mu_{B} = \frac{1 \cdot 0.5}{0.2 \times 0.2} + \frac{1 \cdot 1}{0.2 \times 0.4} + \frac{1 \cdot 0.8}{0.2 \times 0.6}$$ $$+ \frac{0.9 \cdot 0.5}{0.4 \times 0.2} + \frac{0.9 \cdot 1}{0.4 \times 0.4} + \frac{0.9 \cdot 0.8}{0.4 \times 0.6}$$ $$+ \frac{0.4 \cdot 0.5}{0.6 \times 0.2} + \frac{0.4 \cdot 1}{0.6 \times 0.4} + \frac{0.4 \cdot 0.8}{0.6 \times 0.6}$$ $$= 0.5 \cdot 0.04 + 1 \cdot 0.08 + 0.8 \cdot 0.12$$ $$+ 0.9 \cdot 0.16 + 0.8 \cdot 0.24 + 0.4 \cdot 0.36$$ (11) [Example 3] We shall show the example of continuous fuzzy grades. and $\mu_{\mbox{\scriptsize R}}$ be continuous fuzzy grades such that $$\mu_{A} = \mu_{B} = \int_{0}^{1} u/u,$$ (12) then we can obtain the algebraic product, algebraic sum and negation of fuzzy grades μ_{Λ} and μ_{R} (see Fig.2). $$\mu_{A} \cdot \mu_{A} = \int_{0}^{1} \sqrt{u} / u \tag{13}$$ $$\mu_{A} + \mu_{A} = \int_{0}^{1} 1 - \sqrt{1 - u} / u$$ (14) We shall next define a convex fuzzy grade and a normal fuzzy grade as a special case of fuzzy grades. Convex Fuzzy Grades: A fuzzy grade $\mu_A = \int f(u)/u$ is said to be convex if for any $u_1, u_2, u_3 \in [0,1]$ such as $u_1 \le u_2 \le u_3$, $$f(u_2) \ge f(u_1) \wedge f(u_3) \tag{16}$$ Normal Fuzzy Grades: A fuzzy grade μ_{Λ} is normal if $$v f(u) = 1$$ (17) where v = max. Otherwise it is subnormal. A fuzzy grade which is convex and normal is referred to be as a normal convex fuzzy grade. [Example 4] Fuzzy grades shown in Fig.1 and 2 are all normal convex fuzzy grades. Fig.3 indicates that μ_B is subnormal nonconvex and that μ_C is normal nonconvex since the support of μ_C is discrete, that is, μ_C does not satisfy (16). Level Sets: The α -level set of a fuzzy grade μ_A = $\int f(u)/u$ is a nonfuzzy set denoted as μ_A^{α} and is defined by $$\mu_{A}^{\alpha} = \{u \mid f(u) \geq \alpha\}, \quad 0 < \alpha \leq 1$$ (18) It is easy to show that $$\alpha_1 \leq \alpha_2 \implies \mu_A^{\alpha_1} \supseteq \mu_A^{\alpha_2}$$ (19) Let a fuzzy grade μ_{Δ} be convex fuzzy grade, then μ_{Δ}^{α} becomes a convex set (or an interval) in [0,1]. ## ALGEBRAIC PROPERTIES OF FUZZY GRADES UNDER ., + AND T This section discusses the algebraic properties of fuzzy grades under algebraic product (\cdot) , algebraic sum (+) and negation (7). We shall begin with the convexity of fuzzy grades under these operations. [Theorem 1] If μ_A and μ_B are convex fuzzy grades, $\mu_A \cdot \mu_B$, $\mu_A \dot{\tau} \mu_B$ and $\text{l}\mu_A$ are also convex fuzzy grades. <u>Proof</u>: In general, let M_1 , M_2 , N_1 , and N_2 be intervals in [0,1] and let $M_1 \subseteq$ M_2 and $N_1 \subseteq N_2$, then we can easily obtain that $M_1 \cdot N_1 \subseteq M_2 \cdot N_2$ and that $M_1 \cdot N_1$ (i=1,2) are also intervals in [0,1] (It is noted that let M_1 and N_1 be intervals [m_1, m_2] and [n_1, n_2], respectively, an [0,1], then $M_1 \cdot N_1$ is [$m_1 n_1, m_2 n_2$]). For each $0 < \alpha \le 1$, the α -level sets μ_A and μ_B of convex fuzzy grades μ_A and μ_B are intervals in [0,1]. Thus, for any α_1 and α_2 with $0 < \alpha_1 \le \alpha_2$, the relations $\mu_A^{\alpha} \subseteq \mu_A^{\alpha_1}$ and $\mu_B^{\alpha_2} \subseteq \mu_B^{\alpha_1}$ are derived from (19) and hence $\mu_A^{\alpha_2} \cap \mu_B^{\alpha_2} \subseteq \mu_A^{\alpha_1} \cap \mu_B^{\alpha_1}$ is obtained, which leads to $(\mu_A \cdot \mu_B)^{\alpha_2} \subseteq (\mu_A \cdot \mu_B)^{\alpha_1}$. Thus, the fuzzy grade $\mu_A \cdot \mu_B$ is shown to be convex shown to be convex. The convexity of μ_{A} under negation 1 is proved as follows: The negation of $\mu_A = \int f(u)/u$ is given as $\exists \mu_A = \int f(u)/l - u$, which becomes $\exists \mu_A = \int f(l - u)/u$ when l-u is changed by u. For any real numbers u_1, u_2, u_3 such that $0 \le u_1 \le u_2 \le u_3 \le l$, it is obtained that $0 \le l - u_3 \le l - u_1 \le l$. Thus we can have $f(l - u_2) \ge f(l - u_3) \land f(l - u_1)$ in virtue of the convexity of μ_A . Therefore, $\exists \mu_A$ is a convex fuzzy grade. The convexity of $\mu_A + \mu_B$ is proved from the fact that $\mu_A + \mu_B$ is given as $\exists (\exists \mu_A \cdot \exists \mu_B)$ (see Theorem A3) and the convexity holds under \cdot and \bullet 1. Q.E.D. Remark: It should be noted that for discrete fuzzy grades, the convexity under • and + does not hold even if the fuzzy grades are in the shape of "convex" like μ_{c} in Fig.3 (see Example 2). [Theorem 2] If μ_A and μ_B are normal fuzzy grades, then $\exists \mu_A$, $\mu_A \cdot \mu_B$ and $\mu_A + \mu_B$ are also normal fuzzy grades. Furthermore, If μ_A and μ_B are normal convex fuzzy grades, so are $\exists\, \mu_{A},\; \mu_{A}\cdot \mu_{B}$ and $\mu_{A}+\mu_{B}.$ Next, we shall discuss what laws fuzzy grades satisfy under ·, + and 7. [Theorem 3] For arbitrary fuzzy grades (including discrete fuzzy grades), the following laws are satisfied under algebraic product (·), algebraic sum (+) and negation (7). $$\mu_{A} \cdot \mu_{B} = \mu_{B} \cdot \mu_{A} ; \quad \mu_{A} + \mu_{B} = \mu_{B} + \mu_{A} \quad (\underline{\text{commutative laws}})$$ $$(\mu_{A} \cdot \mu_{B}) \cdot \mu_{C} = \mu_{A} \cdot (\mu_{B} \cdot \mu_{C})$$ $$(\mu_{A} + \mu_{B}) + \mu_{C} = \mu_{A} + (\mu_{B} + \mu_{C})$$ $$(\underline{\text{associative laws}})$$ $$(\underline{\text{involution law}})$$ $$(\underline{\text{commutative laws}})$$ $$(\underline{\text{associative laws}})$$ $$(\underline{\text{commutative laws}})$$ $$(\underline{\text{associative laws}})$$ $$(\underline{\text{commutative $$\begin{array}{l} \exists (\mu_{A} \cdot \mu_{B}) = (\exists \mu_{A}) + (\exists \mu_{B}) \\ \exists (\mu_{A} + \mu_{B}) = (\exists \mu_{A}) \cdot (\exists \mu_{B}) \end{array} \\ \begin{pmatrix} \underline{\text{De Morgan's laws}} \\ \underline{\mu_{A} \cdot 1} = \underline{\mu_{A}}; \quad \underline{\mu_{A}} + 0 = \underline{\mu_{A}} \end{array}$$ $$\begin{array}{l} (\underline{\text{De Morgan's laws}}) \times (\underline{23}) \end{array}$$ Proof: We shall prove only the De Morgan's law: $\mathbb{I}(\mu_A^+\mu_B) = (\mathbb{I}\mu_A) \cdot (\mathbb{I}\mu_B)$ of (23). Let $\mu_A = \int f(u)/u$ and $\mu_B = \int g(w)/w$, then it follows from the equality of u+w-uw and $\mathbb{I}-(\mathbb{I}-u)(\mathbb{I}-w)$ in (7) that $$\begin{array}{l} \exists \, (\mu_{\text{A}} + \mu_{\text{B}}) \, = \, \exists \, (\int f(u) \wedge g(w) / 1 - (1 - u)(1 - w)) \, = \, \int f(u) \wedge g(w) / (1 - u)(1 - w) \\ & = \, (\int f(u) / 1 - u) \cdot (\int g(w) / 1 - w) \, = \, (\exists \, \mu_{\text{A}}) \cdot (\exists \, \mu_{\text{B}}) \, . \end{array}$$ Normal convex fuzzy grades (needless to say, any fuzzy grades, normal fuzzy grades and convex fuzzy grades) do not satisfy the following laws. But the identity laws of (29), that is, $\mu_A\cdot 0=0$ and $\mu_A+1=1$ can be satisfied by normal fuzzy grades and normal convex fuzzy grades. $$\mu_{A} \cdot \mu_{A} \neq \mu_{A} ; \quad \mu_{A} + \mu_{A} \neq \mu_{A} \quad (\underline{failure of idempotent laws})$$ (25) $$\mu_{A} \cdot (\mu_{A} + \mu_{B}) \neq \mu_{A} \quad (\underline{failure of absorption laws}) \quad (26)$$ $$\mu_A + (\mu_A \cdot \mu_B) \neq \mu_A$$ (failure of absorption laws) (26) $$\mu_{A} \cdot (\mu_{B} + \mu_{C}) \neq \mu_{A} \cdot \mu_{B} + \mu_{A} \cdot \mu_{C}$$ $$\mu_{A} + (\mu_{B} \cdot \mu_{C}) \neq (\mu_{A} + \mu_{B}) \cdot (\mu_{A} + \mu_{C})$$ (failure of distributive laws) $$\mu_A$$ · $(\exists \mu_A) \neq 0$; $\mu_A + (\exists \mu_A) \neq 1$ (failure of complement laws) (28) $$\mu_A \cdot 0 \neq 0$$; $\mu_A + 1 \neq 1$ (failure of identity laws) (29) Proof: We shall first prove the satisfaction of the identity laws (29) for normal fuzzy grades. Let $\mu_{\Lambda} = \int f(u)/u$ be a normal fuzzy grade, then $\gamma f(u) = 1$ holds from (17). Thus, $$\mu_{\Lambda} \cdot 0 = (\int f(u)/u) \cdot 1/0 = v f(u)/0 = 1/0 = 0,$$ which leads to $\mu_A \cdot 0 = 0$. The same holds for $\mu_A + 1 = 1$. Next, we shall give the example of normal convex fuzzy grades which do not satisfy the distributive law: $\mu_A \cdot (\mu_B + \mu_C) = \mu_A \cdot \mu_B + \mu_A \cdot \mu_C$ of (27). The failure of the other laws can be proved in the same ways. Let μ_A , μ_B and μ_C be normal convex fuzzy grades such that $$\mu_{A} = \int_{0.5}^{1} 1/u, \quad \mu_{B} = \int_{0}^{1} u/u, \quad \mu_{C} = \int_{0.5}^{1} 2(1-u)/u.$$ Then we have $$\mu_{A} \cdot (\mu_{B} + \mu_{C}) = \int_{\frac{1}{4}}^{0.45} 4u - 1/u + \int_{0.5}^{1} 1/u$$ $$\mu_{A} \cdot \mu_{B} + \mu_{A} \cdot \mu_{C} = \int_{\frac{1}{4}}^{\frac{1}{8}} \frac{2}{3} (4u - 1)/u + \int_{\frac{5}{8}}^{1} 1/u$$ Q.E.D. ^{*} The other part of identity laws, i.e., $\mu_A\cdot 0=0$, $\mu_A+1=1$ do not hold in general for arbitrary fuzzy grades (cf. Theorem 4). From the above theorems, we can immediately obtain the following theorem. [Theorem 5] Arbitrary fuzzy grades under algebraic product (·) form a commutative semigroup with identity 1. The duality holds for algebraic sum (+), where 0 is an identity. The same is true of normal fuzzy grades, convex fuzzy grades and normal convex fuzzy grades. Normal convex fuzzy grades (needless to say, any fuzzy grades, normal fuzzy grades, convex fuzzy grades) do not satisfy distributive laws, absorption laws etc. under · and +, and hence they do not form such algebraic structures as a lattice and a semiring. From Theorem 5 and the definitions of (6) and (7), the property concerning with fuzzy sets of type 2 under algebraic product and algebraic sum is derived. [Theorem 6] Fuzzy sets of type 2 in a set X do not constitute such algebraic structures as a lattice and a semiring under algebraic product and algebraic sum. # PROPERTIES OF FUZZY GRADES UNDER ALGEBRAIC PRODUCT (.) AND ALGEBRAIC SUM (+) COMBINED WITH JOIN (U) AND MEET (n) This section describes the algebraic properties of fuzzy grades under the operations of algebraic product (·) and algebraic sum (+) combined with join (\sqcup) and meet (\sqcap), and shows that normal convex fuzzy grades form a lattice ordered semigroup under join, meet and algebraic product. At first, we shall briefly review the properties of fuzzy grades under join and meet (cf. Mizumoto and Tanaka (1976a)). <u>Join and Meet</u>: <u>Join</u> ([]) and <u>meet</u> ([]) of fuzzy grades μ_A and μ_B are defined as follows by using the extension principle. Join: $$\mu_A \coprod \mu_B = \int (f(u) \wedge g(w))/(u \vee w)$$ (30) Meet: $$\mu_A \Pi \mu_B = \int (f(u) \wedge g(w))/(u \wedge w)$$ (31) where v and Λ stand for max and min, respectively. [Property 1](Mizumoto,1976a) Arbitrary fuzzy grades satisfy idempotent laws, commutative laws and associative laws under join (U) and meet (Π). Thus, they constitute a partially ordered set. [Property 2](Mizumoto,1976a) Convex fuzzy grades are closed and also satisfy distributive laws under u and n. Therefore, they form a commutative semiring, but do not form a lattice since they do not satisfy absorption laws. [Property 3](Mizumoto,1976a) Normal convex fuzzy grades are closed and also satisfy absorption laws under Π and Π . Thus, they form a distributive lattice under Π and Π . We shall begin with the following theorem. [Theorem 7] Let μ_A be convex fuzzy grade, and let μ_B and μ_C be arbitrary fuzzy grades, then the followings are obtained. $$\mu_{A} \cdot (\mu_{B} \sqcup \mu_{C}) = (\mu_{A} \cdot \mu_{B}) \sqcup (\mu_{A} \cdot \mu_{C})$$ (32) $$\mu_{A} \cdot (\mu_{B} \Pi \mu_{C}) = (\mu_{A} \cdot \mu_{B}) \Pi (\mu_{A} \cdot \mu_{C})$$ (33) $$\mu_{A} + (\mu_{B} \coprod \mu_{C}) = (\mu_{A} + \mu_{B}) \coprod (\mu_{A} + \mu_{C})$$ (34) $$\mu_A + (\mu_B \Pi \mu_C) = (\mu_A + \mu_B) \Pi (\mu_A + \mu_C)$$ (35) Proof: We shall prove only Eq.(32). The others will be proved in the same ways. Since the fuzzy grade μ_A is convex, the $\alpha\text{-level}$ set μ_A^α of μ_A is an interval $[a_1,a_2]$ in [0,1]. On the other hand, since μ_B and μ_C are arbitrary, each of the $\alpha\text{-level}$ sets μ_B^α and μ_C^α consists of more than one interval. Thus, these $\alpha\text{-level}$ sets will be represented as $$\mu_{B}^{\alpha} = \bigcup_{i=1}^{m} [b_{1i}, b_{2i}] \quad \text{and} \quad \mu_{C}^{\alpha} = \bigcup_{j=1}^{n} [c_{1j}, c_{2j}].$$ By the way, an interval in [0,1] can be considered as a special case of fuzzy grade and thus the join of two intervals $[u_1,u_2]$ and $[w_1,w_2]$ can be given as $$[u_1,u_2] \cup [w_1,w_2] = [u_1 v w_1, u_2 v w_2].$$ Therefore, the α -level set of the left-hand member of (32) will be $$[\mu_{A} \cdot (\mu_{B} \sqcup \mu_{C})]^{\alpha} = \mu_{A}^{\alpha} \cdot (\mu_{B}^{\alpha} \sqcup \mu_{C}^{\alpha}) = [a_{1}, a_{2}] \cdot \{ \bigcup_{i} [b_{1i}, b_{2i}] \sqcup \bigcup_{j} [c_{1j}, c_{2j}] \}$$ $$= [a_{1}, a_{2}] \cdot \{ \bigcup_{j} [b_{1i} \vee c_{1j}, b_{2i} \vee c_{2j}] \} = \bigcup_{i \neq i} [a_{1}(b_{1i} \vee c_{1j}), a_{2}(b_{2i} \vee c_{2j})].$$ On the other hand, the right-hand member of (32) will be Thus, we can obtain $$\mu_A \cdot (\mu_B \coprod \mu_C) = (\mu_A \cdot \mu_B) \coprod (\mu_A \cdot \mu_C)$$. Q.E.D. [Theorem 8] Normal convex fuzzy grades form a lattice ordered semigroup* with zero 0 and unity 1 under U, Π and \cdot . The duality holds for Π , U and +. Normal convex fuzzy grades also form a unitary (=1) commutative semiring** with zero (=0) under U (as addition) and \cdot (as multiplication). The duality holds for Π and +. Convex fuzzy grades form a unitary (=1) commutative semiring under U and \cdot . The duality holds for Π and +. $\begin{array}{c} x * (y \lor z) = (x * y) \lor (x * z); & (x \lor y) * z = (x * z) \lor (y * z). \\ \text{Moreover, L} = (L, \lor, \land, *) \text{ is said to be a } \underbrace{\text{lattice ordered semigroup with unity I and zero}}_{\text{x \lor 0} = x, & x * 0 = 0 * x = 0}_{\text{x \lor V I} = I, & x * I = I * x = x} \\ \end{array}$ ** A <u>semiring</u> (R,+,x) is a set R with two operations + and x of addition and multiplication such that + is associative and commutative, and x is associative and distributive over +, i.e., a x (b + c) = (a x b) + (a x c); (a + b) x c = (a x c) + (b x c). A semiring is unitary if x has a unit e, and is commutative if x is commutative, and is a semiring with zero if + has an identity 0 such that 0 x a = a x 0 = 0. ^{*} A lattice L which is a semigroup under * and also satisfies the following distributive law is called a lattice ordered semigroup and is denoted as $L = (L, v, \Lambda, *)$, where v and Λ are operations of lub and glb in L, respectively. The distributive law is Normal convex fuzzy grades form a (distributive) lattice under U and $\overline{\Pi}$ (Property 3) and also form a (commutative) semigroup under \cdot (Theorem 5). Moreover, they satisfy the distributive law (32) and have a unity 1 (=1/1) and a zero 0 (=1/0) under U and ·. Thus, they form a lattice ordered semigroup with unity and zero under U, N and . It follows from Property 1, (21), (32), (20) and Theorem 4 that normal convex fuzzy grades also form a unitary (=1) commutative semiring with zero (=0) under U (as addition) and · (as multiplication). It is noted that convex fuzzy grades under U and · form a unitary (=1) commutative semiring without zero. In Theorem 7, it is shown that (32)-(35) hold when μ_A is convex. But, if μ_A is not convex, these identities do not hold even if μ_B and μ_C are convex. [Example 5] We shall show the example which does not satisfy (33) in the case where μ_{A} is nonconvex and μ_{R} and μ_{C} are convex. Let $$\mu_{A} = \int_{0}^{0.5} 1-2u/u + \int_{0.5}^{1} 2u-1/u$$ $$\mu_{B} = \int_{0}^{0.5} 2u/u + \int_{0.5}^{1} 1/u$$ $$\mu_{C} = \int_{0}^{0.5} 2u/u + \int_{0.5}^{1} 2(1-u)/u$$ Then we have Then we have $$\mu_{A} \cdot (\mu_{B} \, \Pi \, \mu_{C}) = \int_{0}^{\frac{3}{16}} \frac{3-\sqrt{1+16u}}{2} / u + \int_{\frac{3}{16}}^{0.5} \frac{\sqrt{1+16u}-1}{2} / u + \int_{0.5}^{1} 2(1-u) / u$$ $$(\mu_{A} \cdot \mu_{B}) \, \Pi \, (\mu_{A} \cdot \mu_{C}) = \int_{0}^{u_{0}} \frac{1-2u}{2} / u + \int_{u_{0}}^{0.5} \frac{\sqrt{1+16u}-1}{2} / u + \int_{0.5}^{1} 2(1-u) / u , \, u_{0} = \frac{5-\sqrt{17}}{4}$$ Thus it is found that (33) does not hold when μ_{A} is not convex. [Theorem 9] Normal convex fuzzy grades μ_A, μ_B and μ_C do not satisfy the following laws. The same holds for arbitrary fuzzy grades. $$\mu_A U (\mu_B \cdot \mu_C) \neq (\mu_A U \mu_B) \cdot (\mu_A U \mu_C)$$ (36) $$\mu_{A} \Pi (\mu_{B} \cdot \mu_{C}) \neq (\mu_{A} \Pi \mu_{B}) \cdot (\mu_{A} \Pi \mu_{C})$$ (37) $$\mu_{A} \coprod (\mu_{B} + \mu_{C}) \neq (\mu_{A} \coprod \mu_{B}) + (\mu_{A} \coprod \mu_{C})$$ (38) $$\mu_{A} \Pi (\mu_{B} + \mu_{C}) \neq (\mu_{A} \Pi \mu_{B}) + (\mu_{A} \Pi \mu_{C})$$ (39) [Theorem 10] Let $\mu_{\!A}$ and $\mu_{\!B}$ be convex fuzzy grades, then $$(\mu_A \sqcup \mu_B) \cdot (\mu_A \sqcap \mu_B) = \mu_A \cdot \mu_B$$ (40) $$(\mu_A \sqcup \mu_B) + (\mu_A \sqcap \mu_B) = \mu_A + \mu_B \tag{41}$$ If μ_A and/or μ_B are nonconvex, the above identities are not satisfied. $\frac{\text{Proof:}}{\text{grades}}$ Let $\mu_A^{\alpha} = [a_1, a_2]$ and $\mu_B^{\alpha} = [b_1, b_2]$ be α -level sets of convex fuzzy grades μ_A and μ_B^{α} , respectively, then the left-hand member of (40) becomes [Example 6] Let μ_A be nonconvex fuzzy grade and μ_A be convex fuzzy grade, then (40) in Theorem 10 is shown not to be satisfied. Let μ_A be nonconvex fuzzy grade such as $\mu_{A} = \int_{0}^{0.5} 1-2u/u + \int_{0.5}^{1} 2u-1/u$ and let $\boldsymbol{\mu}_{\boldsymbol{R}}$ be convex fuzzy grade such as $$\mu_{\rm B} = \int_0^{0.5} 2u/u + \int_{0.5}^1 2(1-u)/u .$$ Then we have $$(\mu_{A} \ \cup \ \mu_{B}) \cdot (\mu_{A} \ \cap \ \mu_{B}) = \int_{0}^{u_{0}} 1 - 2u/u + \int_{u_{0}}^{\frac{1}{4}} 2\sqrt{u}/u + \int_{\frac{1}{4}}^{\frac{9}{25}} 2(1 - \sqrt{u})/u$$ $$+ \int_{\frac{9}{25}}^{0 \cdot 5} \frac{-1 + \sqrt{1 + 16u}}{2}/u + \int_{0 \cdot 5}^{1} 2(1 - u)/u, \quad u_{0} = 1 - \frac{\sqrt{3}}{2}$$ $$\mu_{A} \cdot \mu_{B} = \int_{0}^{\frac{3}{16}} \frac{3 - \sqrt{1 + 16u}}{2}/u + \int_{\frac{3}{16}}^{0 \cdot 5} \frac{-1 + \sqrt{1 + 16u}}{2}/u + \int_{0 \cdot 5}^{1} 2(1 - u)/u$$ Thus it has been shown that (40) does not hold when $\mu_{\mbox{\scriptsize A}}$ and/or $\mu_{\mbox{\scriptsize B}}$ are nonconvex. ## CONCLUSION The operations of algebraic product and algebraic sum on ordinary fuzzy sets are used in the studies of fuzzy events (Zadeh,1968), fuzzy automata (Santos, 1972), fuzzy logic (Goguen, 1969) and so on. Thus, these operations performed on fuzzy sets of type 2 will find a number of applications in the studies of fuzzy sets. The algebraic properties of fuzzy sets of type 2 under bounded-sum and bounded-difference combined with union, intersection, algebraic product and algebraic sum will be presented in subsequent papers. #### REFERENCES - Goguen, J.A. (1969). The logic of inexact concepts. Synthese, 19, 325-373. - Mizumoto, M. & Tanaka, K. (1976a). Some properties of fuzzy sets of type 2. Information and Control, 31, 312-340. - Mizumoto, M. & Tanaka, K. (1976b). Algebraic properties of fuzzy numbers. Proc. 1976 International Conference on Cybernetics and Society, Nov. 1-3, Washington, 559-563. - Mizumoto, M. & Tanaka, K. (1978). Fuzzy sets under various operations. 4th International Congress of Cybernetics and Systems, Amsterdam, August 21-25. - Santos, E.S. (1972). Max-product machines. J. Math. Anal. Appl., 23, 677-686. - Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8, 338-353. - Zadeh, L.A. (1968). Probability measures of fuzzy events. <u>J. Math. Anal. Appl.</u>, 23, 421-427. - Zadeh, L.A. (1975). The concept of a linguistic variable and its application to approximate reasoning (I), (II), (III). <u>Information Sciences</u>, <u>8</u>, 199-249; <u>8</u>, 301-357; <u>9</u>, 43-80.