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The concept of fuzzy sets of type 2 has been proposed by L.A.
7adeh as an extension of ordinary fuzzy sets. A fuzzy set of
type 2 can be defined by a fuzzy membership function the grade
{or fuzzy grade) of which is taken to be a fuzzy set in the
unit interval [0,1] rather than a point in [0,1].

This paper investigates the algebraic properties of fuzzy
grades (that is, fuzzy sets of type 2) under the operations of
algebraic product and algebraic sum which can be defined by
using the concept of the extension principle and shows that
fuzzy grades under these operations do not form such algebraic
structures as a lattice and a semiring. Moreover, the properties
of fuzzy grades are also discussed in the case where algebraic
product and algebraic sum are combined with the well-known ope-
rations of join and meet for fuzzy grades and it is shown that
normal convex fuzzy grades form a lattice ordered semigroup under
meet, join and algebraic product.

INTRODUCT 10N

Recently, L.A. Zadeh (1975) has formulated the interesting concept of the
extension principle by which a binary operation defined on a set X may be
extended to fuzzy sets in X and defined the operations for fuzzy sets of
type 2, fuzzy numbers and fuzzy linguistic logic.

In Mizumoto and Tanaka (1976a) we discussed what kinds of algebraic
structures the grades (or fuzzy grades) of fuzzy sets of type 2 form under
join (U ), meet (N) and negation (71 ), and showed that normal convex fuzzy
grades form a distributive lattice and convex fuzzy grades form a commutative
semiring under join and meet.

In this paper we investigate the algebraic properties of fuzzy grades
(or fuzzy sets of type 2} under the operations of algebraic product and
algebraic sum which are defined by using the extension principle (Zadeh,
1975) and show that, unlike the operations of join and meet, fuzzy grades
under algebraic product and algebraic sum do not constitute such algebraic
structures as a lattice and a semiring. Furthermore, the properties of
fuzzy grades are also discussed in the case where algebraic product and
algebraic sum are combined with join and meet, and it is shown that normal
convex fuzzy grades form a lattice ordered semigroup under meet, join and
algebraic product.
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FUZZY GRADES

We shall briefly describe the concept of fuzzy sets of type 2 and their
operations of algebraic product and algebraic sum obtained using the
extension principle.

Fuzzy Sets of Type 2: A fuzzy set of type 2, A, in a universe of discourse

X is characterized by a fuzzy membership function Hy as

[0, 1]
Ma > [0, 1] (1)

(x) is called a fuzzy grade and is a fuzzy set in the unit
A fuzzy grade uAlxi is represented by

: X

where the value u

interval [0,1]. A

up(x) = { f(u)/u, ue [0, 1] (2)
where f is a membership function for the fuzzy grade uA(x) and is defined as
f: [0,1] — [0, 1] (3)

[Example 1] Suppose that X = {Susie, Betty, Helen, Ruth, Pat} is a set of
women and that A is a fuzzy set of type 2 of beautiful women in X. Then
we may have

A = BEAUTIFUL = high/Susie + middie/Betty + low/Helen
+ not Tow/Ruth + very high/Pat,

where the fuzzy grades labeled high, middle, ... ,very high may be depicted
as in Fig.1l. _

%*
We shall next define the operations of algebraic product and algebraic
sum for fuzzy grades using the concept of the extension principle**.
Let pA(x) and uB(x) be fuzzy grades for fuzzy sets of type 2, A and B,
represented as '

i) = [ f)e, e 10, 1] (4)

ug(x) = [ g, we [0, 1] (5)

* Algebraic product and algebraic sum performed on ordinary fuzzy sets A
and B are defined as follows (Zadeh, 1965).

Algebraic Product: AB <—> uAB(x) = uA(x)-uB(x)

Algebraic Sum: A*B o> “A+B(x) = “A(x) + uB(x) - pA(x)-uB(x)
where the symbols -, +, - represent arithmetic product, arithmetic sum, and
arithmetic difference, respectively, and uA(x) and uB(x) are both in [0, 1].

**  Let A=[y,(x)/x and B=fu (y)/y be ordinary fuzzy sets in X and let * be
a binary opeﬂation on X. Tﬁen the operation  can be extended to fuzzy sets
A and B by the following relation (the extension principle).

Ax B = (fug(x)/x)*(Jugly)/y)

where p denotes min.
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Then the operations of algebraic product and algebraic sum for A and B are
defined as follows by using the extension principle.

Alagebraic Product:
AB == uyplx) = 1, (x)-up(x)

= (Jf(u)IU)-(Jg(W)/W)
- j(f(u) A g(w))/un (6)

Algebraic Sum:
AMB <—

“A+B(£) = up{x) + up(x)
j(f(u) Ag(w))/(u + w)

- [crt) ag)/tu s w - w) (7)
The complement of fuzzy set of type 2 A is defined as
Complement: A <= uﬁ(x) ='1uA(x)
- [rra - w (8)

where a stands for min. We call the operations for fuzzy grades, that is,
. as algebraic product, + as algebraic sum, and 7 as negaticn hereafter.

[Example 2] As a simple example, we shall execute the operation of algebraic
product for discrete fuzzy grades u, and Mg (uA(x) is abbreviated as My for
simplicity). Let p and My be as

My 7 0.5/0.2 + 1/0.4 + 0.8/0.6 (9)

Hp = 1/0.2 + 0.9/0.4 + 0.4/0.6 (10)
Then from (6) we have Mpg @S follows.
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Ma-MB = 5.2x0.2 ' 0.2x0.4 © 0.2x0.6

+ 0.940.5 , 0.94 1 ,0.9.0.8

0.4x0.2 ~ 0.4x0.4  0.4x0.6

+ 0.4A0.5 . 0.4 A 1 + 0.4A0.8

0.6x0.2  0.6x0.4  0.6x0.6

0.5/0.04 + 1/0.08 + 0.8/0.12
+ 0.9/0.16 + 0.8/0.24 + 0.4/0.36 (11)

[Example 3] We shall show the example of continuous fuzzy grades. Let Hy
and Hg be continuous fuzzy grades suchrghat

= | u/u, (12)
0

4

Hp = Hp.
then we can obtain the algebraic product, algebraic sum and negation of fuzzy

grades 1) and Mg (see Fig.2). .

Wy " My = JD/TT7u o (13)
(1

Ha ¥ 1y = 'OI—V “u/u (14)
C 1

Ty = [ 1-uru (15)
0

L

We shall next define a convex fuzzy grade and a normal fuzzy grade as
a special case of fuzzy grades.

Convex Fuzzy Grades: A fuzzy grade uA=jf(u)/u is said to be convex if for
any ul,uz,u3e[0,1] such as Uq U sy,

Normal Fuzzy Grades: A fuzzy grade Hp is normal if
v f{u) =1 (17)
u

where v = max. Otherwise it is subnormal.
A fuzzy grade which is convex and normal is referred to be as a normal
convex fuzzy arade.
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[Example 4] Fuzzy grades shown in Fig.l and 2 are all normal convex fuzzy
grades. Fig.3 indicates that u is subnormal nonconvex and that ke is normal
nonconvex since the support ofuC is discrete, that is, He does not“satisfy (16).

Level Sets: The a-level set of a fuzzy grade Hp® ff )/u is a nonfuzzy set
denoted as UA and is def1ned by

= {u[f(u)za}, O<agl (18)

It is easy to show that

oy g ay => UA _.UA (19)
Let a fuzzy grade Ha be convex fuzzy grade, then uK becomes a convex set
(or an interval) in"[C,1].

ALGEBRAIC PROPERTIES OF FUZZY GRADES UNDER -, + AND T

This section discussee the algebraic properties of fuzzy grades under algebraic
product (-), algebraic sum (+) and negation (0). We shall begin with the
convexity of fuzzy grades under these operations.

[Theorem 1] If p, and p, are convex fuzzy grades, u,-Hps HyTH, and Tp, are
A B A "B "A "B A
also convex fuzzy grades.

Proof: In general, let M;, M, N;, and N, be intervals in [0,1] and let M; &
M, and N;S N», then we can easily obtain that M,. N1& Mz+N, and that M. -N.
(i=1,2) are also intervals in [0,1] (It is noted that let M, and N, be 1htervals
[ml,mg] and [ny,n,], respectively, in [0,11, then M;- N; is [myn;,man,]).
For each O<axl, the a-level sets p, and ua of convex fuzzy grades u, and p
are 1ntervalsa1n [0 1]. Thus, for any oy and o, with g<a1<a2, the @e]at1o
WSt and prie pd ‘ are der1ved from (19) and hence Hp” Mg c %18t s
o tailed, whibh 1elds t UA uB)Ot __(uA uB) 1. Thus, "the"fuzz¥ grgde Hpoig
is shown to be convex.
The convex1ty of u under negat1on T is proved as follows: The negation
u)/u is given aé u)/1-u, which becomes Tu,=[f(1-u)/u when 1-u
éhanged by u. For any réa] numbers Ui,Ug,Uus such tha% 0<u1<u2<u3<1,
1t is obtained that 0<l-us<l-u,<t-ui<1. Thus we can have f(1-up)2f(1-us)af(1-u,)
in virtue of the convexity of u,. Therefore, 1y, is a convex fuzzy grade.
The convexity of “A+ is"proved from the fact that p,+u, 15 given as
1(1pA51uB) {see Theorem "3)”and the convexity holds under - é Q.E.D.

of H

Remark: It should be noted that for discrete fuzzy grades, the convexity under
. and + does not hold even if the fuzzy grades are in the shape of "convex"
like 1. in Fig.3 (see Examplie 2).

[Theorem 2] If u, and u, are normal fuzzy grades, thenTlu,, and uA+uB
are also normal fﬁzzy grgd Furthermore, If Hy and Mg aﬁ grmgl convex
fuzzy grades, so are'1uA, Hp-Hg and uA+uB

Next, we shall discuss what laws fuzzy grades satisfy under -, + and 1.

[ Theorem 3] For arbitrary fuzzy grades (including discrete fuzzy grades), the
following laws are satisfied under algebraic product (), algebraic sum (+)
and negation (1}.

My s Mg = Mgt Mps Wy 4 g = Mg + o (commutative laws) (20)

(uy - T A S T T uC)T}
(g +ug) *ue =g + (g + 1)

(associative laws) (21)

1(1uA) =y (involution law) (22)
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Tuy - o) = () # (Tug)
Ty * uB) = () - (TUB)
My 01 =05 iy +0 = My (part of identity laws)* (24)

% (De Morgan's laws) (23)

Proof: We shall prove only the De Morgan's iaw:’i(uA+u )=(1uA)'(1p ) of
(23). Let uA=ff(u)/u and u,=[g(w)/w, then it follows frim the equa]ﬁty of
utw-uw and 1=(1-u)(1-w) in “(7) that

Vughug) = 1F() A g(w)/1-(1-u) (1-w)) = [F{u) A g(w)/(1-u)(1-w)
= (JF(u)/1-u) (Jg(w)/1-w) = (Tuy) (ug).
[Theorem 4] Normal convex fuzzy grades (needless to say, any fuzzy grades,
normal fuzzy grades and convex fuzzy grades) do not satisfy the following

laws. But the identity laws of (29), that is, u,-0=0 and n,+1=1 can be
satisfied by normal fuzzy grades and normal conveéx fuzzy grédes.

Wy Mg # My 3 Wy + i # Ha (failure of idempotent laws) (25)

uy o O Fog) Foug '} ‘ .

" 1 (”A . ”B) 4 y (failure of absorption laws) (26)
27}

Uy ¢ {up ¥ oua) #ougtug oy (

A B ¢ A'B ATC (failure of distributive laws)

uy * (uB‘uC) F oy +up)eluy + He)

My (ug) #0535 ¥ (Twy) #1  (failure of compiement laws) (28)

Hp 0#0; Hn +1#1 (failure of identity laws) (29)
Proof: Me shall first prove the satisfaction of the identity laws (29) for
normal fuzzy grades. Let uA=ff(u)/u be a normal fuzzy arade, then v f(u) =1
holds from (17). Thus, u

by 0 = (ff(u)/u)-1/0 = v f(u)/0 =1/0 = 0,
which Teads to u,-0=0. The same holds for u,+1=1.

Next, we sﬁal} give the examplie of norﬁa] convex fuzzy grades which
do not satisfy the distributive Taw: -(pB+u )=U, * Up+H “He of (27). The
failure of the other laws can be proveé in thg saée %ayé.

Let Mas Mg and He be normal convex fuzzy grades such that

1

1 1
= Jo.llu, Mg = IOU/u, e = f 2(1-u)/u .

0.5

»

Then we have - o s .
uA-(uB+uC) = [ dy-1/u + JO?JU

sl

1
T T o Jé %{4U-1)/U + Jg]/u Q.E.D.

* The other part of identity laws, i.e., 1,-0=0, uA+1=1 do not hold in general
for arbitrary fuzzy grades (cf. Theorem 4).
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From the above theorems, we can immediately obtain the following theorem.

[Theorem 5] Arbitrary fuzzy grades under algebraic product (-) form a
commutative semigroup with identity 1. The duality holds for algebraic sum
(+), where 0 is an identity. The same is true of normal fuzzy grades, convex
fuzzy grades and normal> convex fuzzy grades.

Normal convex fuzzy grades (needless to say, any fuzzy grades, normal
fuzzy grades, convex fuzzy grades) do not satisfy distributive laws, absorption
laws etc. under - and + , and hence they do not form such algebraic structures
as a lattice and a semiring.

From Theorem 5 and the definitions of (6) and (7)., the property concerning
with fuzzy sets of type 2 under algebraic product and algebraic sum is derived.

[ Theorem 6] Fuzzy sets of type 2 in a set X do not constitute such algebraic
sIructures as a lattice and a semiring under algebraic product and algebraic

sum.

PROPERTIES OF FUZZY GRADES UNDER ALGEBRAIC PRODUCT (-) AND
RLGEBRAIC SUM {+) COMBINED WITH JOIN (Ul ) ANDMEET (n)

This section describes the algebraic properties of fuzzy grades under the
operations of algebaric product (+) and algebaric sum (+) combined with
join (U ) and meet (1), and shows that normal convex fuzzy grades form a
lattice ordered semigroup under join, meet and algebraic product.

At first, we shall briefly review the properties of fuzzy grades under
join and meet (cf. Mizumoto and Tanaka {1976a)).

Join and Meet: Join (U ) and meet (1) of fuzzy grades Ha and ng are defined
as follows by using the extension principle.

Join: ug Uoug = I (fu) ag(w))/(u v w) . (30)

Meet: ua Mg = { (F(u) Ag(w))/(u A w) (31)
where v and a stand for max and min, respectively.

[ Property 1]{Mizumoto,1976a) Arbitrary fuzzy grades satisfy idempotent laws,
commutative laws and associative laws under join (U ) and meet ({1 ). Thus,
they constitute a partially ordered set.

[ Property 27(M1izumoto,1976a) Convex fuzzy grade$ are closed and also satisfy
distributive laws underland(t. Therefore, they form a commutative semiring,
but do not form a lattice since they do not satisfy absorption laws.

[ Property 3](Mizumoto,1976a) Normal convex fuzzy grades are closed and also
satisfy absorption laws under Ul and fl. Thus, they form a distributive lattice
under U and M .

We shall begin with the following theorem.

[ Theorem 7] Let Ha be convex fuzzy grade, and let Mg and He he arbitrary
fuzzy grades, then "the followings are obtained. _

p - (g Bimg) = (up g U Gy v owe)- (32)
upy * g T o) = {uy - wgd TGy He) (33)
g + (ug U ued = Gy ¥ wg) U (g # me) (34)

g ¥ (g N we) = Gy # wg) I G # Hel (35)
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Proof: Ve shall prove only Eq.(32). The others will be proveg in the_same
ways. Since the fuzzy grade Ha is convex, the a-level.set p, of Hp 1S an
interval [a,,a.] in [0,1]. On the other hand, since u and ﬁ are"arbitrary,
each of the a-level sets “g and uu consists of more thgn one Qnterval. Thus,

these a-level sets will be represgnted as
m n
o = . & = - v .
wg = Ulbygs byl and yig = Ulcps Cp31
i=1 , J
By the way, an interval in [0,1] can be considered as a special case qf fuzzy
grade and thus the join of two intervals [u;,uz] and [w;,w,] can be given as

[uisuz] U [wiswa] = [urv wys Upv wol.
Therefore, the a-level set of the left-hand member of (32) will be

Lup - (gl uC)Ia = “K . (ug U u%) = [a],az]-{? [b]i,b21]ng [c1j,c2j]}

1sJ J is]

On the other hand, the right-hand member of (32) will be

= [a1,a2]-{_U_[b11V c1-s b21V Czj]} = U‘[a](bliv Clj), 32(b21v CZj)]'

[UA - UB U UA ) Uc]a = (UK * Ug) U (Uz * Ug)
{[a]ﬂazj' ? [b]isti]} U {[a]aaz]‘ U [C]jaczj]}

{ ? [a1b1i, a2b21]} u {‘U [a}c1j, azczj]}

J

1Y 3195 a2b21v aZCZj] = 1.Uj[a](bh.v C]j)’ az(bziv czj)]

U {a]b
i.d
(v (“B u uc)]u.

Thus, we can obtain uA-(uBLluC)=(pA-uB)U (“A'“C)' | Q.E.D.

[ Theorem 8] Normal convex fuzzy grades form a lattice ordered semigroup*
with zero 0 and unity 1 under U, and . The duality holds forTl,u.aqd + .
Normal convex fuzzy grades also form a unitary (=1) commutative sem1r1ngf*
with zero (=0) under (as addition) and « (as multiplication). The duality
holds for[land +. Convex fuzzy grades form a unitary (=1) commutative
semiring underland -. The duality holds forRand +.

* A lattice L which is a semigroup under * and also satisfies the following
distributive law is called a lattice ordered semigroup and is denoted as L =
(L, v, A, *),.where v and Aare operations of Tub and glb in L, respectively.
The distributive law is .
x*(yvz)=x*y)vix*z); (xvy)*z=(x*z)v(y*z).

Moreover, L = (L, v, A, *) is said to be a lattice ordered semigroup with
unity I and zero 0 if the followings are satisfied for any x in L, i.e.,

XxvO0-=x, X *0=0*x=0 '

x v I I, x*¥1=1%x-=x

** A semiring (R,+,x) is a set R with two operations + and x of addition and
multiplication such that + is associative and commutative, and x is associative
and distributive over +, i.e.,

ax(b+c)=(axb)+(axc); (a+b)xc=(axc)+(bxc}).
A semiring is unitary if x has a unit e, and is commutative if x is commutative,
and is a semiring with zero if + has an identity O such that 0 x a =a x 0 = 0.

LI
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Proof: Normal convex fuzzy grades form a (distributive) lattice under U and
i (Property 3) and also form a (commutative) semigroup under - (Theorem 5).
Moreover, they satisfy the distributive law (32) and have a unity 1 (=1/1)
and a zero 0 (=1/0) underuand . Thus, they form a lattice ordered semigroup
with unity and zero underl ,0and -. It follows from Property 1, (21), (32),
(20) and Theorem 4 that normal convex fuzzy grades also form a unitary (=1)
commutative semiring with zero (=0) under U (as addition) and - (as multipli-
cation). It is noted that convex fuzzy grades under |} and - form a unitary
(=1) commutative semiring without zero.

In Theorem 7, it is shown that (32)-(35) hold when v is convex. But,
if Ha is not convex, these identities do not hold even if Hp and e are convex.

[Example 5] e shall show the example which does not satisfy (33) in the
case where Ha is nonconvex and Hy and b are convex. Let

D5 1
J T-2u/u + J 2u-1/u
0 a5

UA =
05 1
Mg = J 2u/u + J 1/u
o 0.5
0.5 1
Mo T J 2ufu + [ 2(1-u)/u
(1 2 0,5

Then we have .

3 [V
) oo [P “/T+6u - 1, B
Ha (uB 0 uc) = fo 3 /;+|Gu/u + Jﬁ -———7?~———afu + JO'E(1 u)/u

Yo "6 - 1 1 5-4T7
(uA'uB)ﬂ (“A'”c) = Iol-ZU/u + L—O—Z"—-/u + Jo?s“'U)/u’ U= ~7—

Thus it is found that (33) does not hold when Ha is not convex.

[ Theorem 9] Normal convex fuzzy grades u,.u and e do not satisfy the
following laws. The same holds for arbitfary fuzzy grades.

ual (ug * ) # iy Uong) (g U ue) (36)
.uAn(uB cug) £ (g Toug) - (gl He! (37)
up U Gg ¥ we) # (uy U wg) * (U He) (38)
up Mg +ug) 7 (g 0 wg) F (g M) (39)

[ Theorem 10] Llet Ha and He be convex fuzzy grades, then
(g Uug) = (w0 Wg) = My " Mg (40)
Cup U ng) # (ua T owg) = wy * 1 (41)
If uy and/or ug are nonconvex, the above identities are not satisfied.

Proof: Let uﬁ =[a.,a,] and ug = [b,,b,] be a-level sets of convex fuzzy
grades Ha and Hg s réspgctively, then thg left-hand member of (40) becomes

[(UA U UB)'(UA 0 'IJB):IOt = ([a-l :az:lu[b'l :bz])([ a]sazln [b] sbz])
= [a]v b], a,v b2]-[a]A bys ayh b2] = [(alv b])(a]Ab1),(a2v bz)(azA bz)]

_ _ . T .
= [aTb]s azbz} = [a-l aaz] [b1’b2] UA UB [UA UB]
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[ Example 6] Let u_be nonconvex fuzzy grade and p be convex fuzzy grade,
then (40) in Theorem 10 is shown not to be satisfied. Let Kp be nonconvex
fuzzy grade such as '

{05 r
B T J01—2u/u + Jo.gu-1/u
be convex fuzzy grade such as
0,5 1
Wy = j 2ufu + J 2(1-u)/u .

0 0e5

and let UB

Then we have

Ug 1 9
(UAU UB)'(UAH UB) = J01'2u/u + F ZW/G/U + J’TZ(]'VIJ)/U

Uo T
De5 _ 1 .
+ J R J 2(1-u)/u, o= 1-3
L s
- de5 _ 1
T c3-/1+bu, __lilliiEEJU + 1 201-u)/u
A B 2 3 2 e 5

0
Thus it has been shown that (40) does not hold when Ha and/or Hp are nonconvex.

CONCLUSTON

The operations of algebraic product and algebraic sum on ordinary fuzzy sets
are used in the studies of fuzzy events (Zadeh,1968}, fuzzy automata (Santos,
1972), fuzzy logic (Goguen, 1969) and so on. Thus, these operations performed
on fuzzy sets of type 2 will find a number of applications in the studies of
fuzzy sets.

The algebraic properties of fuzzy sets of type 2 under bounded-sum
and bounded-difference combined with union, intersection, algebraic product
and algebraic sum will be presented in subsequent papers.
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