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IMPLEMENTATION OF A FUZZY-SET-THEORETIC DATA STRUGTURE SYSTEM
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This paper describes an {mplementation of a system for fuzzy sets manipulation which is based on FSTDS
(Fuzzy-Sat-Theoretic Data Structure), an cxtended version of Childs® STOS {Set-Theoretic-Data Structure),

FSTDS language 7s considered as a fuzzy-set-theovetically oriented language which can deal,

for exampla,

with ordinary sets, ordinary relations, fuzzy sets, fuzzy relations, L-fuzzy sets, level m fuzzy sets,

type n fuzzy sefs, and deneralized fuzzy sets, The

fuzzy set operations, and the data structure FSTDS for reprasenting fuzzy sets.
eight araas, namely, Fuzzy Set Area, Fuzzy Set Representation Area, Grade Area,

system censists of an interpreter, z collection of
FSTDS is made up of
Gradas Tupla Area, Element

Area, Flement Tuple Area, Fuzzy Sct Mame Area, and Fuzzy Set Operator Name Area,
F5TDS system, in which 52 fuzzy set operations are available, is implemented 4n FORTRAN, and is

" urrently running on a FACOM 230-455 camputer.
INTROQDUCTTION

In the real world, there exist many fuzzy things which
can not or need not be precisely defined. In the past,
fuzziness has been studied as vagueness, ambiguity or
vncertainty. However, s$ince L.A. Zadeh proposed the
concept of fuzzy sets din 19651, | ft has been studied
vigorously and applied to various fields such as aulomata
theory, formal languages, natural languages, logic,
pattern recognition, learning theory, decision making,
and mathematical theory of computation (see [27]).

It is well-known that ordinary set theory is very
useful to various Kinds of areas. There exist many
systems which can deal with ordinary sets and velations,
some of which are STOS developed by Childs®*", SETL by
Schwartz®’®*?, and LOREL by Katayama®. STDS (Set-Theo-
retic Data Structyre) embedded in FORTRAN or MAD Jan-
guage introduces n-ary relations as data model and
provides fairly many kinds of set and relational
operations, though it has a 1imited form of algebraic
languages as to the data sublanguage. SETL ic a set-
th tical  language of very high level. As an sxample
of .. imitive oporation in SETL, x+y means ths addition
of twa integers or reals, the vnion of two sets, or tha
Concatenation of two tuples or two character strings in
accordance with the types of x and y. Howsver, only
basic operations are,available in SETL. LOREL was
developed to solve the combinatarial prablems {e.y.,
graphs, automata, formel languages) which have logical
relations among their data. The concent of a set in
LOREL, however, is nat the same as that of an ordinary
set. Tt is just that of a linsar list] PASCAL® can deal
with sets containing a small number of elements by
declaring the variables which have set type.

5ince fuzzy sets are considered a generalization of
ordinary sets, a system which can deal with fuzzy sets

will be muck more usefyl because of the wide applicability Definition 2

of fuzzy set theory,

In this paper we describe an implementation of g
system For fuzzy sets manipulation which 15 based on
FSTDS {Fuzzy-Set-Theoretic Data Structure) which is an
extended version of Childs' $TDS. FSTDS language is
considered as a fuzzy-set-theoretically oviented Tanguage
which can deal with ordinary sets, ordinary (n-ary) rela-
tions, fuzzy sets, (n-ary} fuzzy relations, L-fuzzy sets,
level m fuzzy sets, type n fuzzy sets and generalized

fuzzy sets. The system is demonstrated using a number
of examples.

FSTDS system, in which 52 fuzzy set operations are
avatiable, 1s implementad in FORTRAN, and is currently

runring on a FAGOM Z30-455 computer.
FUZZY SETS AND FUZZY RELATIONS

We shall make a brief summary of the concept of fuzzy seis
and fuzzy relations which will be needed in later sections
Intuitively, & fuzzy sebt is a class with unsharp
boundaries, that is, a class in which the transitcion fram

membarship ta non-membership may he gradual rather than
abrupt.

Definition 1. A fuzzy set F in a universe of discourse
U 75 chavacterized by a membership function:
(1)

UF H u__%’[u- 1]
which 2ssociates with each alement u of U a number uF(u]
in the fnterval [0, 1] which represents the grade of
memhership (grade, for short) of u in fuzzy set F, with
U and | dencting non-membevrship and full membersnip.

respectively. In the notation of a fuzzy set F, wa yse
F = {I-IF{LI-[}."U-P uF{UE}",UZ, aen 3 uF(un]fun} (2}
(3)

wheare u;s 1=1,2,...,n, represent the elements of U.

A fuzzy relatian is defined as a fuzzy set of the
Cartesian product of some universes of discourse.

A fuzzy relation R (especially, a hinary
fuzzy relation) 1n UxV or T to V is characterized by a
bivariate wembership function as

{4)

Mp * Uxv=—>[0, 1]
A fuzzy

where UxV¥ is the Cartesian product of U and Y.
ralation R in UxV is expressed as

f{f}iiir)j!f ?fo



R = {upluyevy}/cupavpzy wplugavgl/<uy,vp>,
veus upluav )/<u oy o}

= E_ ”R{ui’"j}fdui‘vjb (g}

T4
where u., i=1,2,....m, and ¥is J=1.2....50, Tepresent
the elements of U and V, respectively, and <Ugavy> stands

for an ordered pair of u; and Vj’ i.e., an element of
UxV.

Mere generally, an n-ary fuzzy relation R in U]xU2
X WU is a fuzzy relation which is characterized by an
n-variate membership function ranging over U]xUEx...xUn-

Since Zadeh fivst foramulated the concept of fuzzy
sets and fuzzy relakions, some extensions have been
described, for example, L-fuzzy sets!? by Goquen, level
m fuzzy sets!land type n fuzzy sets!?*!%py Zadeh.

L-fuzzy sets are a generziization of the membership
cpace from the interval [0,7] to a lattice L.
of Jiscourse of a level m fuzzy set may be the set of
Tevel m-1 fuzzy sets with understanding that Tevel 1
fuzz>-sets are ordinary fuzzy sets. For type n fuzzy
set. he values of their membership functians are type
n-1 tuzzy sets of the imterval {0,1] rather than points
of [0,1]. Type 1 fuzzy sets are eguivalent to ordinary
fuzzy sets. .

More formally, we have the following definition.

Definition 3. An L-fuzzy set X, a lgvel m fuzzy set ¥
=1.7,...) and a type n fuzzy set Z {(n=1,Z,...} in 1
are characterized by the follewing membership functions
Mys Yy and s respectively.

Hy 3 U —>L {7

w G0 —e o, 11 (8)
/n/‘_[n,u

by U— 5170011 {9)

whe . represents a lattice and A% the set of all func-
tion. from B to A.

An L-fuzzy relation, a level m fuzzy relation and a type
n fuzzy relation are easily defined by the same generali-
zation to an ordinary fuzzy velation.

Now we shall have some examples of various fuzzy
sets.

Exanple 1, Assume that
U = {a, b, c, d}. (10}
Then we may have a furzy set F in U as
F = {0.1/a. 0.8/0, 0.9/c} (11)
and a fuzzy relation R In UxD as
R = {0.3/<a,b>, 0.9/<b,d>} . £12)
Example 2. For U defined in {10), we have
X = {<0.1,0.9x/a, <0.8,1>/b, <0.9,0>/c} {13)

a5 an L-fuzzy set in .,
For the same U, if two fuzzy sets in U are expressed
ag, 5ay,

Y1 = {0.3/2, 0.2/b, 0.9/d} (18}

The universe

Y2 = {0.6/2, 0.1/b} {15}
then we would have
Y = (0.6/Y1, D.17Y2)

as a level 2 fuzzy set in U,
Moreover, for the same U, we may have z type 2
fuzzy set:

Z = {high/a, middle/b, low/d} {17}
wheve high, middie and low are assumed to be fuzzy seis

in {0, 0,1, 0.2, ..., 1} &[0,1] and, for example, are
expressed as follows.

(16)

high = {11, 0.8/0.%, 0.4/0.8} (18)
middle = {1/0.5, 0.5/0.6, 0.5/0.4} {19)
Jow = {170, 0.B/0.1, 0.4/0.2} (20)

Hote. In {13) Lisalattice[0,1]x[0,1] ordered by
<a1,b1> < <a2,b2> == a5, and b1§b2
where a,, 3y, b1, b, € [0,1]. In this paper, L-fuzzy

sets mean only in the case that L 1s [0,1]x[0.1]x...
x[0,1] with an ordered relation such that

< .b a.<b.!(i=1,2,..,n}

<a]:azv--sa LA i

b » <=
n = n

21--1
where a, and b, are elements of [Q,1].

FUZZY-SET-THEORETIC DATA STRUCTURE

In this section we shall describe "Fuzzy-Set-Theoretic
Deta Structure {FSTDS)" which is an extended version of
"Set-Thearetic Data Structure (STDS)" by Childs®'®,
FSTDS is a data structure representing fuzzy sets
and fuzzy relations to be manipuiated conveniently and
gfficiently by fuzzy sot operatgrs,
FSTDS 15 made up of eight areas as follows:

Fuzzy Set Area (FSA)

Fuzzy Set Representation Area (FSRA)
Grade Arsa (GA)

Grade Tuple Area {GTA)

Element Area [EA}

Elemant Tuple Arsa (ETA)

Fuzzy Set Name Area (FSHA)

Fuzzy Set Operator Name Avea (FSONA}

DO ~=] ZM LI o L [
o e e e

A fuzzy set operation., which is represented by a pro-
cedyre, accessas fuzzy sets through the pointers in
Fuzzy Set Area (FSA)}. Fuzzy set operztor will be
oresented later. In what follows, we shall discuss
each area of FSTD5 in detail (see Fig. 1 -4},

{1) Fuzzy Set Area (FSA)

This area is a collection of the pointers to the repre-
sentations of each furzy set and fuzzy relation. Given
& pointer in this area, it is possible to access all
information associated with any fuzzy set. Most fuzzy
set operations which eperate on only fuzzy sets have
the painters to this area as operands. Each data cell
of FSA is a pair of pointers, one to the Fuzzy Set
Representation Area (FSRA), the other to the Fuzzy Set
Wame Area {FSKAY. Pointers to FSNA are not needed for
most fuzzy set operations, but they are required for
some, such as the output of type n fuzzy sets.

{2} Fuzzy Sct Representation Area (FSRA)

This area is a collection of fuzzy set representations.
A fuzzy set representation consists of the number m (n
>0} of gradefelement pairs in ome fuzzy set, a grade
part which contains n pointers of grades, and an element
part which has.npointers of elements. For ordinary fuzzy
set consisting of n grade/element pairs, the element

s b 576
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Fig. 1 The representation of a fuzzy set F (11)
and a fuzzy relation R (12} by FSTDS
: GA
FSRA 03
2 __/,/,. 0-2
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Fig. 3 The representation of a level 2 fuzzy

set Y (16) by FSTDS

part contains n pointers to the Element Area (EA), and
the grade part contains n pointers to the Grade Area
(GA)Y, corresponding to the element pointer of the element
part. From another point of view, the grade part and
the ~“-ment part are considered as one ¢rade/element

part .ich has n grade/element pointer pairs.

The pointer of the element part can be to the Ele-
ment Tuple Area (ETA) and Fuzzy Set Area (FSA) in the
case of a fuzzy relation and a level m fuzzy set, respec-
tively. On the other hand, the pointer of the grade
part can be to the Grade Tuple Area (GTA)} and FSA for an
L-fuzzy set and a type n fuzzy set, respectively.

An ordinary set is represented as a special case of
an ordinary fuzzy set, that is, all pointers of the grade
part are to 1 in GA. It should be noted that any elements
whose grade values are 0 are omitted from a fuzzy set
representation.

Note. We shall hereafter use the term "fuzzy set" as a
generic name expressing not only ordinary fuzzy set but
also ordinary set, L-fuzzy set, level m fuzzy set and
type n fuzzy set and occasionaly even fuzzy relation.
The term "fuzzy relation" is used similarly to express
various kinds of fuzzy relations.

(3) Grade Area (GA) .

This area is a collection of the numbers in the interval
[0,1] which are the values of membership functions (i.e.,
membership grades).

Z __‘_____..-- 0.1
— —T1 08
..—--—»-—‘_‘-.-'_’-‘i 0.8
2 1
— — _ 5
— z /
] —7
FENA )
i Eéa
b
- e
Fig. 2 The representation of an L-fuzzy set X (13)
by FSTDS
FSRA
FSA 1
|- —
i
FEMNA
1 _high
4 middle
Iow
F4

- T uppy— E— - _— - e

Fig. 4 The representation of a type 2 fuzzy set I
(17) by FSTDS

(4) Grade Tuple Area {GTA}i

The Grade Tuple Area is a collection of n tuples of the
values of membership functiens for, say, an L-fuzzy set.
Each n-tuple definition consists of the number n {n21)
{the length of the tuple} and n pointers which may refer
to Grade Area {GA) for an ordinary L-fuzzy set, to Fuzzy
Set Area [FSA) for an L-type n fuzzy set or again to
Grade Tuple Area (GTA) for a higher order L-fuzzy set.

Note. More generalized fuzzy set will be found in Example
b

(5) Element Area QEA!}

The Element Area’ is a collection of element names, that
is,all names of elements 1n the universe of discourse.
An element name may be a character string of an arbi-
trary length or a real number. In our system, if the
element name can be interpreted as a number, then it is
consideraed as a real number. Otherwise it is considered
to be a character string. For example, all of the ele-
ment names ,123, +0.123 and +00.123000 are equal, but
..123 and ..1230 are not.

(6) Element Tuple Area (ETA)

This area is a collection of n-tuples of elements, for
example, the elements of an n-ary fuzzy relation. Each
n-tuple definition of this area consists of the number
n {n>1) (the Tength of the tuple) and n pointers which
can refer to the Element Area (EA) for an ordinary fuzzy
relation, to the Fuzzy Set Area (FSA) for a level m
fuzzy relation or again to the Element Tuple Area (ETA}
for a fuzzy relation of fuzzy relations.

-

. " ’ )
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{7) Fuzzy Set Name Area {FSNA}E

This area is a collection of fuzzy set names. A fuzzy
set name 15 implicitly defined by assigning a fuzzy set
ta it. In other words, a character string to which a
fuzzy set has been once assigned 1s considered as a fuzzy
set name, but it is not declaved explicitly as a fuzzy
set name, A fuzzy set name 15 considerad as a variable
whose value 15 a fuzzy set rather fhan & number or a
character string. The data cell of this area contains
the storage representstion of a name as a character
string and a pointer to Fuzzy Set Area {FSA).

This area is used not only in the case whare fuzzy
set names are needed by fuzzy set operations, e.d.. out-
put of type n fuzzy sets but also in the case whare the
interpreter laoks for a peinter to FSA given a fuzzy set
name, :

(8) Fuzzy Set Operator Name Area (FSONA)

This area is a collection of fuzzy set eperator names,
The datz cell of this area has the same structure as

that of the Fuzzy Set Name Area ([FSNA}. except that a
pointer to the Fuzzy Set Area (FSA} is in the internal
code of the fuzzy set operator. This area may be omitted
from FSTDS from the point of wiew that FSTDS is only a
reoresentation of fuzzy sets and fuzzy relations. This
area, however, is necessary since it facilitates imple-
mentation of FSTOS system and gives added flexibility

to i

raTDS consists of the ahove eight areas.
next present some exampies of FSTOS.

We shall

Example 3.  The fuzzy set F and the fuzzy relation R
defined by {11) and (12), respectively, in Exampie 1 are
represented by FSTDS in Fig.l. }

Example 4. The t-fuzzy set X, the level 2 fuzzy set ¥,
and the type 2 fuzzy set 7 defined by {13}, [16) and
{17}, respectiveiy, in Example 2 are represented by
FSTDS in Fig. 2, 3 and 4, respectively.

As illustrated in Fig. 1 - Fig. 4, the same grade
valuas in Grade Area {GA) and Grade Tuple Area (GTA} and
the same alement values in Element Area {FA} and Element
Tunle Area {FTA) are shared in FSTDS, respectively. But
the common subset is not shared as in STDS?**. This s
because several ordinary sets can be easily divided into
disjoint ones, but it is impossible to divide fuzzy seis
untauely.

With FSTDS it is possible to rapresent not oniy’
ordinary fuzzy sefs, L-fuzzy sets, level m fuzzy sets
and e n fuzzy sets, but alse more complex fuzzy sets
whic .e call “gensralized fuzzy sets"'. By a generaiized
fuzzy set, we mean the fuzzy set which is obtained by
combining various kinds of fuzzy sets dencted in the
previcous section. For example, an L-type 3 fuzzy set,

& level 5 type ? fuzzy relation, and an L-level 7 fype
5 fuzzy set are considered as generalized fuzzy sets.

Let U be 2 universe of discourse expressed

u={a, b, c, d .

If fuzzy sets ¥! and Y2 in U and high

, middie and Tow
in [0,1] are defined by {14}, {(15), (18], (19} and (20),
respectively, then we may have :

W = {<high,middle, 1>/<¥1,a>, <middie,]ow,0>/<¥1,b>,
<low,high,.0.62/<Y2,c>} “(21)

as a generalized fuzzy set in UxU, more exactly, an L-
leve] 2 type 2 fuzzy relation in Uxl.

FSTDS is gensral enpugh to represent more imagina-
. tive fuzzy sets than the ones above.. We can define in
FSTDS a fuzzy set ¥V as

¥ = {0.1/a, <low,1>/¥1,
<high,1ow, 1>/<middle,high,3.56>},

Example %,
by

(22)

Thus, it is not necessary in FSTDS that all elements,
or grazdes, within one fuzzy set have the same typa.

There are several rmethods of mapping from FSTDS to a
storage structure. [In our case, as we implement it in
FORTRAN because of its high portability, the storage
ttrycture means what data type in FORTRAN is suitable
for FSTDS, Consequently, we have no choice but to use
arrays as o stovage structure. Tt seems to be natural
that the data cell of each area vecupies contiguous
array compohents. As for the representation of a whole
arez, we have alternative choices concerning how many
arrays are requived , that is, several small arrays
{i.e., an array represents one area only), or only one
large array {i.e., only one array is partitioned to
represent all areas). WNe have decided on cne {integer)
array rather than several. For this cholce would seem
to result fn the greatest flexibility and the most
economical use of computer memary. _

One integer array is initially divided into many
biocks .of the same size (We can specify the size of
blocks in the head of FSTDSL program. The defaulted size
is 100 now). A biock is occupied by one specific area,
If an area demands more siorage space, a -new block is
supplied to this area and connected to 1t by a pointer.

The merits of this method are that faw reallocaticns
of areas are necessary and no pointers are reguired for
the connection of data cells. It is also a merit that
since most data cells in the same area are contiguous,
we can have a high lecality of memory references in
searching one specific area, so we may attaln a high
performance even in a paging environment by adjusting
the size of block to that of a page.

We can use FSTDS as a data structure for repre-
senting fuzzy sets and fuzzy relations. But il is
somewhat troublesome and & source of error if a user has
to manage and manfpulate many sorts of pointers in F5TDS.
We therafpre give a method by which a user ¢an define
gnd manipylate fuzzy sets and fuzzy relations without
worrying about the pointers in FSTDS. In other words,
1t is possible for a user to define and manipulate fuzzy
sets and relations easily with no attention to their
reprezentations in a computer, or even in FSTDS.

He shali turn our attention [in the next Secticn o]
thic method, which may be considered as a command or a
programming language Yor the manipulation of fuzzy sets
and fuzzy relations.

FUZZY-SET-THEQRETIC DATA STRUCTURE SYSTEM

In this section we shall describe FSTDS tanguage (FSTDSL,
for short) which is an expression Tanguage which enables
g user to make use of F5TDS, and FS5TDS system which
Tnterprets and executes z program written in FSTDSL.
FSTOS system can be considered as an F5TDSL processor.

In FSTDSL, we can write an "expression” whose gene-
ral form is similar to that of a function call in
FORTRAN, that is,

(23)

apr {opdT, opdys +.es opd“};_

where the opr is a fuzzy set operator name and the opd,
are its operands. The number of operands is dependent
on a fuzzy set aperator {see Table 1). The opd, may be
either a fuzzy set or a grade/element pafr., Since any
depth of nested operation is feasible, the opd. may be
ggain of the form of (23) instesd of a fuzzy set.

Tn addition to the expression, we may have a
"ctatemant" that the finite times of <set name>:= are
followed by the expression (23}, that is,

vI:=v2:=...=vm:=npr(0pd1. opdys -vvs opdn];

(24)

where the opr and opd. (i=1,2,..,n) are the same as {23),
and v. {j=1.2...,m} ate set names and a symbol ":= means
the a¥signment operation, By an entire statement, (24)
means that the value of expression is computed and
assigned to all set names Vi Vas eees Voo

Meozamile, P



Table I
fuily wet oparalors fapd| ramarks
SEI’{u.;,uz.. . .un} ny| censtruct ordinary sat
FSETOap /Uy abgflipees ot fu ) | m20f gonstruct fuzzy set
ASSTGNEY,X) 2 | assfgn % to ¥ [same as YiaX)
UJJICH[II.IZ...,.I,\} nx?| unicn of *1"‘:'"'-“5
IHTERSEI.'.TH.W(I1 ,I?._._. . ..xn:l 2Rl intersection of -:1'12'" ...In
PRGCI[K-l.I pes .,Hﬁ} nzZ2] product of x1 ":Z""'II'I
hSUM[Il.Iz.....IH} n22{ algebraic sum of Xy, X5, K,
mIF[:l,IE,___,xn} n22| algebraic difference of KI .12..-.+ ':n
BSUM(R| Tpyannudy) n22; buounded sum of Ky aa..oaky
BD]F(II.IE....,I.‘] n22 | bounded difference of X ...,
UHTONA ) 1 ’
INTERSECTIONR [x} 1
PRODRLX) 1
operate on 81T fuzzy sats over the

AsUMA(x) 3 docain of tha operand set x
ADIFAlY) t
ESUMALY) 1
BDEFA{%) 1 |

OSE{ni.Hz....,Rn} nz2| composition of III,IIZ....,R"
COMVERSE(R) 1 | conwerie relation of R
HAGELR X} 2 | image of X under R
CIMAGE (R, X) .2 | comyarsa Tmage of X undar R
DOMATN( R} 1 | domafn of &
RAWGE[R) 1| ranoe of B
l:?l',;(l.xz....ln] 722 | Cartesian product of X;Xo....
RS{R, X} ‘2 [ restriction of B to X

tranglate level m fuzry set A

RELATIONEX) 1 to fuzzy relation

Fuzzy Set Operators Available in FSTOS System

futzy sot apsrators tord| remirs
EQX) .X,) 2 [t x, equat to 1,7
SUESET{XI":;] 21 ¥ 4 subset of dot
DISIOTUTLX) g ees X 027 | pre X;,%pe-osyX, disjoint from each
ELEMENT (wfu. XY Z | Is uuen element of X7 nenert.
{1y fupi X} 7 ﬂ%u,

| sor{wfa,X) 2 | scalar operstion of w and X
E5P{wx i} 2| ¥
DIL(X) 1 | dilatTen
CON{X) 1 | concentration
CINT(X) 1 | <ontrast jntensiflcation
NORM(X) 1 nnrraiizetibn af X
coix) 1 |eardinality of X
(X} 1 | the nomber of elements of X
HAXG(X] 1 | the caxicum grade of X
L35 ¥ ¢ ? | support fuzzification of X by &
GF(x 2} 2 | grade fuzzification of X by K
BLT[Il.I?.,._,an ml | delate KpuXase ool from 3ysted
PRINT{Xy Xpauvn ok} nzl | print eut Kjukouses oy
Palﬁrs(;l.xz.....x“) 21| print out X.X.....% 10 Eoolean type
PMHTS(II’!Z"“'%] nzl | print out xl,xz..-..x“ in set typs
PRINI'H(II.!I.....H“} nx1 ] print out xl.xz,....xn with naoes
PRINTL{charzctar sbring) 1 | print out characker steing
BMP(ay %, .00, n2t  dimp areas 1n FETDS
LHL 1 1 print qut all furzy sets

| PARA(L =2y mp=fy. o a2} r2l | specify the sptions
E{ L) 1ord| evaTuate % and halt

. The symbols (with subscripts) in Table I tepresent the feollawing meéﬁinéé:

an element, that is, 2 rezl number, a character string or a fuzzy met, or an n-tuple of them.
a grade, that is, a mmber in the interval [0,1] or a fuzzy ser, or an n-tuple of them-

an expresalon or a fuzzy sat

a fuzzy set or a fuzzy set to be dafined.
a Fuzzy relation

a set of fuzzy secs

an integer.

2 real number

an alphabetizal character

a kernel set

an option of PARA operator

PPoFR o rE W P4 IE Y FE PPN AW

RN X I DT A

2. Far SET and FSET operators, SET(} and FSET(}, i.e., n=0, mean the emply sat.

3. For S0P operator, the n rapresents:

maximum 2: minfmum 31 product 4: algebraic sum 5: absolute difference

I
7: bounded difference
4, For EWD operatar, END can be used for END{().

As for fuzezy set operations, FSTDS system computes
the grades of fuzzy sets using many kinds of fuzzy set
cperations.

Thus., the only things a user need do are to ana-
Iyze a given problem and to define and manipulate fuzzy
sets to solve it using the fuzzy set operators provided
in FSTDSL. The fuzzy set operators available in FS5TO0S
system are just like built-in funciiens in other pro-
gramming languages.

At present FSTOS system provides 52 fuzzy set ape-
rators, and a user can salve & problem by the use of
these operaters. Table I lists all fuzzy set operatars
available now. The dafinitions of these aperators on
fuzzy sets and fuzzy relations are briefly presented in
the Appendix. For more detailed discussions, see i1,
2, 10-13, 15, 17-191.

b: boundad sum

Next, we shall present suome examples wriiten in
FSTDSL.

In FSTDSL, we can write
UI=SET AR S0
F:;FSET(O.l!A- 0-8!5] pDQID)gll
Ri=FSET{0s3/{AR>y U:?f(B.p));

to define the ordinary set U, the fuzzy set F and the
fuzzy relaticn R in Exampie 1. FS57DS system interpretes
above statements and sets up FSTDS shown in Fig.T.

Note that Fig.1 does not contain the representation of
U on account of 1imited space.

Example 6.

Example 7. Me can define easily L-fuzzy sets, Tevel m
fuzzy sets and type n fuzzy sets in FSTOSL.

Mozeori!



For the L-fuzzy set defined by (13} in Example 2,
ve need only write

so XeR reduces to the image of X under R.
Suppose that X and Y are defined by

A EFSETICG. 10,9374y CO481127By £0:9.03/03 14 ¥={1/a, 0.9/b, 0.3/c} (26)
Level m fuzzy sets and type n Tuzzy sets can not at y = {0.7/a, 0.7/b, D.2/¢} {27}
present be written in one statement. Thus, we must . - . .
defire the component fuzzy sets of level m fuzzy sets and R is defined in terms of relation matrix:
and type n fuzzy sets. For example, the Jevel 2 fuzzy & b C
set ¥ defined by {16) can be written in FSTDSL as follows. af1 o038 o

Y1i=FSETCO(3/ar 04278+ 0.9/0)1 _
YZiaFSET(0.6/As 021/B)1 R = bjo7 ¥ 0.7 (28)
1=FSETCO6FY1s Q. 1/Y203 0 0.5 0.1

The type 2 fuzzy set 7 in {17) can be written as

HIGH!=FSET(L/1y 0.8/0.9y 0:4/0,8)3 N
MIDDLE ! =FSETC1/0:5, 0:5/046+ 0,5/0:4)7
LOW!=ESETCL/0r 0:8/0.11 0e4/0e2)13 :
Zi=FSET(HIGH/Av MIDDLE/B. LOW/D)3

Note that in FSTDSL we must define component fuzzy sets
first., Moreover, the higher order L-fuzzy sets, the
higher level fuzzy sets and the higher type fuzzy sets
can be written in the same fashion.

txample 8. The generalized fuzzy set M defined in {Z1)
and The fuzzy set ¥ in (22) can be written in FSTDSL as
follows,

" Tirst, we define component fuzzy sets:

YLi=FSET(Q.3/8y 0.2/8y 0:.9/D)F o
Y2!2FSETCO.6/ 8 0.1/B) 3 i
HIGH:=FSET{1/1s 0,850+ Gu&f028)5
MIDDLE:=FSET(L/0+5y Q570464 025700421

LOWI=FSETC(L/0: 0:s8/0.1y Dub/f0a2)5 :

and then we can define W and ¥ as

“1=FSETCCHIEHMIDDLE 13 A C¥L vAY Y (R IDOLE LOW+ 037 <Y IaRYS

_ CLOWSHIGH 0627 CY2NEX3E
VIeFSETLO.1/Ar CLOW12#Y1y CHIGHILOW 12/ CHIDOLEHIBH S5
Example 9. We can represent a fuzzy divected graph'®
shown in Fig.5 by FSTDSL statements as follows:

VIesSET{Xe Yo Zuw)y
AL=FSETCOsL/<Xa Yy 0.T/YAZ2r Oo&/ WAL
A Cuaye 0.3 WYY 009/ X2 ;

Gi=SETOCVaADRE - -
where the ¥ represents a set of vertices and the A2
fuzzy set of directed arcs, that is, a set of wei{ghted -
directed ares, and thus the @ represents the entire
fu™" directed graph G.

Fig.5 A fuzzy directed graph G
Example 10, let X and Y be fuzzy sets jn U and R a
fuzzy relation from U to ¥. Then we have .
(Xxo¥)UR=(XUR)o (YUR) (25)

wheye U denotes the union of fuzzy gets and o the com-
nosition of fuzzy relations. But, in §his case, X and
¥ are unary fuzzy relations (i.e., ordinary fuzzy sets)

LOWi=FSET{1/0y D+8/0.1s 0.,470.2)3

Then, we can write the program as foilows.

KI=FSETL(1/ 8 0a0/By D03/CHS

_'I":‘FSET{Dnl!’ﬁD DT B O-QIC}I . . . ——
RimFSETCLACA Ay CJB/CARY s DaT/4Ba kY LAKDABI

. D1 B7¢BCra_Du5F4CaBd 0. 1FCCITHIN
FRIMTCASSIGN A LINIONCA«Y YIS

_ PRIMTCIMACEC(RYZ})3

TN mIMAGE(RY KT WimIMAGECR Y&

_PRINTCUNICNCV W2
END3

and the execution result of above program is

CFSET(L/As 0.9/Bs 0.9/C)3 ... XUY o
FSET(L/As 0,978 0.27033 ... (XDY)oR
FSETC1/As 0.9/81 042/CV _ ... (XU R) o [YUR);

ANIMAL
ﬁe/ ngh oY
6)?;.
BIRD 17AMMAL FISH
1 0% //h@h \\Qi ///é: i
BAT WHALE SALMON

- CANARY
Fig.6& An exanpie of fuzzy knowledge

Example 11. The fuzzy knowledge shown in Fig.6 is repre-
sented in FSTOSL by the following level 2 type 2 fuzzy
set ANIMAL. ' ’

MIDDLE :=FSET{L/0+50 0:5/0:6¢ Q:5/0.808 .
HIGH!=FSET{A/Ls DB48/0.9s 0.4/0.8)3
BIRDI=FSET(L/CANARY s O.5/7BATE
MAMMAL i @F SET(H{GH/BAT 0,8/WHALED
FISHI=FSET{O.7/wHALEy LASALMONIY _ __ . . o
ANIMAL :=FSET(MIDDLE/BIRDs HIGH/MAMMAL+ LOW/FISHYS

Th2 question “What does a BAT belong to ™ will be
translated into FSTDSL statements as
ISA: =CONVERSE (RELAT IONCANTMALID G
XI=TMAGECISASSETIRBATIIG .
where RELATION is a fuzzy set operator by which a level
m fuzzy set is translated inte a fuzzy relation and

COKVERSE is that of a converse relation.
Then the output of above X (i.e., PRINT{X}:) is

FSETCO.3/BIRDy. HIGH/MAMMALY S

Thus we have the answer "A BAT belongs to BIRDs with
the compatibility 0.5 and to MAMMALs with high compati-
» bility". :

ﬁh;xuwﬁ‘ngf



As shown in Example 6 - 11, FSTDSL has a simple
syntax. But it seems to be very important that a user
chould become familiar with many kinds of fuzzy set ope-
rators. The following should be noted.

First, if one encounters the FSTDSL statement:

X:=FSET{0. 3/BIRD); (29}

one may not know exactly whether the BIRD is a fuzzy
cot name (i.e., X is defined as a Tevel m fuzzy set)
or an element name {j.e., X is defined as ordinary fuzzy
set). This is understood from the fact that when the
statement (29) is interpreted by FSTDS system, if a fuzzy
cet has been already assigned to the character string
BIRM, thenm BIRD is a fuzzy set name; otherwise 1t is an
element name.

The reason for this unusual manner is that we would
not 1ike to put a character string representing an ele-

ment name in the guotation marks (e.g.. FSET{0.3/'BIRD'}).

1t is very annoying to make a program and punch it using
a lot of quotation marks. In order fo overcome, however,
- the difficylty of distinction between a fuzzy set name
and an element name, the user will be recommended to
ensure that fuzzy set names are differant from element

. names, though the same names are permitted. In fact,
every problem can be easily formulated in this fashion
and it makes the program very easy to read and understand
even in usual programming languages.

Fach fuzzy set operator has a restriction on the
nmhb  »f operands and the types of operands, and the
opera.ss are interpreted in the predefined order. For
example, given the statement (23), X becames a set name
since % 1s followed by the assignment symbol :i= . FSET
js interpreted as a fuzzy set operator name. The chara-
cter string 0.3 can be interpreted as a number in the
interval [0,1]. As for the character string BIRD, if
BIRD has heen already defined as a fuzzy set name {i.e.,
BIRD:=..uuss : has gcecured before), then BIRD is inter-
preted as a fuzzy set name, otherwise BIRD is an element
name. I an unexpected number of operands occur, or if
thelr type i5 incorrect, then the program goes intc an
error state.

Mote. The term "type" in this context is different from
that in “type n fuzzy set". In this context, we use the
term "type"' to express whether a given cperand is an
ordinary set, an ordinary relation. an e¢rdinary fuzzy
set, an ordinary fuzzy relation, an L-fuzzy set, a level
m fuzzy set or a type n fuzzy set and 50 on.

second, the omission of quotation marks causes all
space symbols to be ignored in FSTDSL, so a user must
use the special symbol # denoting a space if it is
nec  ry to cutput spaces (see Fig.??

Third, an expression of FSTDSL always has as value
a fuzzy set rather than a number, a truth value or 3
character string. So does a statement.

FSTDS system consists of a simple interoreter, a set,
of fuzzy set operations and a data structure FSTDS.
At the present time, the interprater is designed
to interprete one FSTOSL statement at a time and invoke

2 sequence of necessary fuzzy set operations. Once a
fuzzy set operation is invoked, its fuzzy set operation
sets up or manipulates fuzzy sots in the data structure
FSTDS and returns control to the interpreter except END
operation, and then the interpreter interpretes the
next statement until END oparation occurs,

As was shown in Example 6 - 11, FSTDSL is designed
to have no labels and no control structure {e.q., IF ...
THEN ... ELSE ..., GO TO ... , or WHILE ... DO ... eic).
This is not only because FSTDSL processor can be imple-
mented easily but also FSTDS system have another user
interface, that is, the connection of FSTOS and FORTRAN.
If a user wants to use a control structure, he may make
use of that.of FORTRAN. We shall next demonstrate this
useful facility.

" the capability and theé applicability of F3TD3L.

Example 12.  The program in FSTDSL and FORTRAN shown as

C_®EE EXAMPLF 12 #es virrus FORTRAMJESTOSL

1 F FPARALGRL)
2 __. N=5 et —
3 F LARGE=\=SMNPTY
__ A& __ D019 l=luk e
4 G=FLOATC! Y /FLOATIND
—.&___F LARGE=LIN[ONCLARGEs FSETCIIGA 110}
7 F UsUNIONCUSSETL1]D}
a3 _ A0 CONTIMNUE } e
9 F PRINTNCUSLARGE)
.10 o F_ . MOT_LARGE=ADIFCUWLARGEYI _ PRINTN(NOT-LARGEY
11 STCR )
k2 ___END

causes to the results:

UsFSETCL.0/4s 1.0/21 1:0/3¢ 1.0/44 1,0/5)3 _
LARGE=FSETL{0:2/1s D472+ 0,673« 04874y L.0/5)5
NOT-LARGE=FSET(0+8/1s 016721 0e4/3: 0:2/433

FSTOSL can be embedded in FORTRAK as in the above program.

In this case, one must put the character F at the head

of an FSTOSL statement [i.e., the first column for cards}

to differentiate an FSTDSL statement from a FORTRAN state-

ment and put one exclamation wmark ! and two !! followed

by FORTRAN integer and real variables, respectively,

which are indicating its value inside an FSTDSL statement.
The above program shows how to define a universe of

discourse U {i.e.. an ordinary set} and a fuzzy set

LARGE, and compute the caomplement of LARGE (i.e., NOT_

LARGE] and output them. In more detail, we first make

a set U and a fuzzy set LARGE empty {1ine 3) and

then compute a grade value & of the element I and. add

the G/] pair to LARGE and the I to U for I=1,2....,5

{from line 4 to 8) and then output the set U and tha

fuzzy set LARGE together with fuzzy set names (1ine 9)

and compute the absolute difference of LARGE from U

{i.e., the complement of LARGE) and output 1t with fuzzy

set name {line 10).

A pragram written in FSTDSL/FORTRAN is translated
inta the FORTRAN program by FSTDS translator, that is,
an FSTOSL statement is expanded into several CALL state-
ments n FORTRAN. Then they are compiled, Tinked with
SUBRDUTIMES in the library for the interface between
FSTDSL and FORTRAN, and executed.

In order to match FSTOSL syntax with that of FORTRAN,
the FSTDSL syntax is s1ightly modified as foilows.

First, the prefix symbols {1 and !! indicate FORTRAN
integer and real varisbles, respectively, in FSTOSL
statement. In FSTDSL, for example, the expression SET{X)}
represents an ardinary set [X}, while SET(!/!X} represents
{3.14} with X=3.14.

Second, the end of Tine {1.2., column 72 for cards)
means the end of statement. We may, therefors, omit the
Yast semicolon ; of lines. Instead of this omission, we
must use coiumn & for continuation.

Third, the assignment symbal := can be reduced to
tha FORTRAN assignment symbol =,

The data azre passed from FORTRAN fo FSTDSL by the
use of the zbove [ and !1 facilities. Conversely, passing
them from FSTOSL to FORTRAN is not so easy because FORTRAW
can nat dezl with aven ordinary sets. 350 we have chosen
the facilities to pass them element by element. Such -
facilities are now provided by CALLing Specitic SUBROUTINES
directly in FORTRAN. So there are:ngy changes to FSTDSL
and FORTRAN syntax. Some examples of such SUBROUTINEs
are to get each grade with its type in a specified fuzzy
set, to det each element with its type in a specified
fuzzy set and to get the nuwber of elements {n a specified
fuzzy set . :

The connection of FSTDSL and FORTRAN greatly extends
Fram ™
an oppasite point of view, this aliows the provision in
FORTRAN of facilities to define and manipulate fuzzy sets

'JI'}JI:’-’L.’LFH"?L‘J f‘\' j
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TWRITE (A 2000

FORMAT{1M1)Y -

GET PRIMARY TERMS (SMALLs MIDDLF. LARGE) ##e
U=SMALL="[NDLE=L ARGE=EMPTY

DO 146 T=1.7

U=UMTONCUWSZTC 1)
GESMALL=Z (FLOAT (I 24 0s245¢1,0)
SHALL=UNTOMNCSHALLFSET OV TGSMALLAY 1))
GMDDLE=P [ (FLOAT ({240 8.0Y
MIDDLE=UNTOMIMIDNLF o FRET It EYMDDLE 2 13 )
GLARGE=5(FLOAT () v 4.04%.,5:7:0) )
LARGE=UNIONCLARGE «FSET (P YGLARGF /Y[ )
CONT I 8iEJE

PRINTC (24 #PRIMARY ATERMS ¥t e u /)

BRINTC (U=)3 PRINTSIUY

PRINTHNCSMAI LaMIDDLF«LARSBE)

COMPUTF HEDGE FFFECTS =##
VERY_LARGE=CONILASGEY
MORELORLLESS.aMatL=NTL{3MALLY

SLIGHTLY L SMALL=WNORMC INTERSFCTION(SMALL « ADTF U« CONESMALLY 233
SOHTOF JSMALL =HNORMCINTERSECTIONC
¥ ANEFCUCONCCONCEMALLYY Y «niTLESMALLD XD
PRETTY_LARGE=NORM{INTERSECTTONC

t COCINTELARGEY AR IF (U CINT{CONCLARGE? ) })

PRINTC(/ A 4ne P SULLTAOF#HEDGFAFFFECTS Astne/d)
PRINTN{VERY CLARGE MOREDORLLESS-SMAL L ySLIGHTLY uSMALL
E SORT_OF_SMALL yPRFTTY.LARGEY
ARPPROX IMATE HAEASOMING ##4
Fl: X 15 SMmallL, _
P21 X AND Y AKE APPROXIMATELY FRUAL C(AEY .
V=
AE=EMBETY
DO 20 [=1.7
DO 20 J=1.7
GAE=P [ (FLOAT¢I=J343,0:0,0)
AC=UNTOMCAR WFSETOIIGAE/ ¢ [at U3 Y)Y
CONTINUF
X=SWALL
Y=IMAGECAE VXY _
PRINTCL/ FoxndAPPROX IMaATE#REASON NG ss=/
ARAADT LEXAIS¥SMALL 3/ _
FENEER2 I HREANDEY FAREHAPPROXIMATELY#ESUAL L/
b T R e = e e o

HaRERIIpY eI}

Mo W

BRINTIY)Y

"PL: XI5 S=ALi.

2. If X IS *0ORE O LESS SMALL THEN Y IS5 LARGE

ELSE-Y 1S SORT OF SMALLLWV

P=MORE_ORLI_ESSUSHALL
m=L ARGE
S=S0RTLOFLSMALL .
Ra=UNTONLCP(PaR)+CPIADIF{UP)Y +8Y)
BXW=CP oW
REB=IMTFREECTION(
¥ BSUMCADIF (UXVAaCP P VIILCPIUYRYI Iy BSUMICP (P WICP(L«5)Y) 3
YAa=[MAGE {Qa %)
YE=IMAGF (T8 ¢ X2
PRINTO(/ Pyadpl i o SESMALL T/

2 HHAYPZ2 LB IV B I QUEUIREAORPLESSESMALL 4

X THENMY 21 52LARGE#ELSE#Y F I SHSORTHOFASMALL S/

¥ A o

x A it o e 1}
PRINTCC/THR#MAX IMIN#RLULE: £

# FEXADI LAV RIS H)I T TRINTIYAY
PRINTCCO/ THA#AR T THAFT I CH#RLE L/

¥ FYFLRI LAY RISHE) T PRINTLYR)

EN

STOP

S D
' {a) Program

Fig.? A program in FSTDSL/FORTRAN for the Tinguistic hedges and the approximate reasoning
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#ny PRIMARY TERMS #ew

UaSFTELs 24 30 84 54 A T
SMALL=FSET(1 /1. 0.TTT8/2 0,2222/730%
MIDNLE=FSETI0.5/3y 1/8s 0.525)3

LARGF=FSETI0.2222/45. 0-TTTa76 12704

¥## RESULT 0OF HFNGE FFFECTS #a=
VERY.LARGF=FSFTID (049375 O.0608976+ 1/731
MORF - _L FSS_SMALL=FSGFT{L1/1. 0.83312/2,
SLIGHTLY_SHAalL=FSETCL/2y 1.R623733%
SORT.OF_SMAl |L=FSST{1/72: 0.,7432/3)3
PRETTY-LARGF=FSFT(O.3198/5 1786)3

#h# APPROX IMATF REASCMING mex

G.471373%5

Pl X 15 SMALLS
P2i X AND Y ARE APHROXIMATELY ERUALS
P31 Y IS FSFTC(L/Lle OLTT78/24 0. TTTRL3 04222274 0.4222275)3
Fl: X Is SMALLS
P2: 1F ¥ 1§ _MORE DR'LESS SMALL THEM ¥ IS LARGE FLSF Y IS SDRT DF SMALLi
THE MAXIMIN RULE: _
P3!Y 1S FSFT(0.222272 0.2222/%, 0.222275s D.TTT856 L/TYS
THE AQRITHMETIC RULES _
P3¢ ¥ 1S FSETC(D.22227/1y 04222242y a2222/34 002222748 Du3403754 BuTTT0 6N ;f?)?
(b} Output
and fuzzy relations, and it therefore greatly extends the If P, is a conditional statement such as
application area of FORTRAN. Mareover, the connection of :
FSTRSL and other programming Janguages could be easily P,: If x is P then y is Q else y is 5, (36)

implemented by writing down FSTDS translator for those
languages.

We shall conclude this section with some examples
of the ape11cat1ons of FSTDS system to 11n?uist1c

hedges?®*1%and approximate reasoning?®?17:3%
Example 13. A Vinguistic hedge such as very, more or

Tess, much, slightly etc. can be viewed as an aperator
which aperates on the operand fuzzy set. For example,
the ¥=guistic hedges very, more or iess, sligphtly,

sort and ‘pretty were defined hy Zadeh'® and Lakeff'®
as follows:
very x = CON{x) (30}
more or less x = DIL{x} {31}
slightly x = NORM{xn‘TICON{x}} {3z}
sort of x = NORM{ACON{CON{x}}NDIL{x}) {33}
pretty x = KORM{CINT(x)(V{CINT{CON{x})) (34)

where x stands for a fuzzy set,] andfithe complement and
the intersection, respectively, and the other gperators
are the same as those of FSTDS system,

As for approximate reasoning, Zadeh has proposed the
compos itional rule of inference which is expressed in
symbols as .

Pt x s A
Pz: ¥ and y are R

(35)
PS: y is AoR

vhere x and y are GbJECt names. A 75 a fuzzy set in U,
R is a fuzzy relation in Ux¥, and AaR is the composition
of A and R,

where x and y are ohject names and P, Q and 5 are fuzzy
sats in U, ¥V and ¥, respectively, thern it is translated
inta the relation R.uf x and y using either the maximin
rule of conditional proposition'® as

R=(Px0Q)U(1Px$) (37)

where x, U and 7 stand for the Cartesian product, the
union and the compiement, respectively. or the arithmetic
rule of cond1t1ona1_propcs1t1on1°as

R = {1(PxV¥) @ {Ux2)) N1 ({PxV} B (URSJ) (38)

where x and 7 are the same as {37), and 1 and @ stand
for the intersection and the bounded-sum, respectively.
We shall give a pragram in FSTDSL/FORTRAN and its
printing resutts to Fig.7. First, it defines U, SMALL,
MIDDLE and LARGE. Second, Tt computes very LARGE,
more ar Tess SMALL, s¥ightiy SMALL, sort of SMALL, and
pretiy LARGE and outputs them, Third, it infers the
consequences by the approximate reasoning:

P]: X is SMALL. {39)

Pyt X and Y are approximately equal [AE).

and by another approximate reasoning:

Pyt X is SMALL.
(40}

P.:

2 If X is move or less SMALL

then ¥ is LARGE else Y it sort of SMALL.

to compare the maximin rule of conditional proposition

3?% and the arithmetic rule of corditiconal proposition
i8],

e

r':"sl}#

/}



Note. The functions ${uza,b,c) and PI{usb,¢} in lines N
ind 8 of Fig.7{a) are S and li-shaped functions, respec-
tively, defined by Zadeh'” and the function in 1in2 7 is

a Z-shaped function which is the reflection of the S5-shaped
function about the Jine usb. These functions are depicted
as follows.

PL{uib,c)

Zlujs b}

0.5

1
1
1
]

.

3]
O-shaped funcbion

£ b 2
Z=shaped function

2 b

1}
I
4
i
‘'
i
'
i
L]
3
+

4
S-shaped functisn

Fig.8 Standard functiens available’inFSTDS system

1t should be noted that in this example the program
to compute the hedge effects and to carry out the approxi-
mate reasoning is given, but we could write a program to
read the propositions, say, in the form of (39) or (40),
to analvze their syntax and compute the hedge effects
using {(30)-(34) and to infer the consequences by the
approximate reasoning using (35}, (37) and (38) and
output the conseguences of fuzzy sets, and morecver
outp: ‘he consequences in the linguistic form by the
Tingu..tic approximation. .

CONCLUSTON

le have described FSTDS system in which we can write a
program using the concept of fuzzy sets and fuzzy rela-
tions.

FSTDS system, in which 52 fuzzy set operators are
available, is implemented in FORTRAN, and is currently
running on a FACOM 230-455 computer.

This system requires 116 KB including an integer
array of size 5,000 for FSTDS. This is because the
current version of FSTDS system i5 an interpreter
implementation, so all SUBRQUTINEs of the fuzzy set
pperators must zlways be linked. These SUBROUTINEs
occupy more than half of F5TDS system,

There is a way around this difficulty, namely,
the impiementation of a compiler version of FSTDS system
which reads FSTDSL statements and generates a sequence
of fuzzy set ogperaters. In the compiler version, the
SUSRQUTINEs of unused fuzzy set operations would not be
1int and the memory requircements for the execution of
an F..uSL program would, therefora, be decreased.

The processing time for FSTOSL statements is
strongly dependent on the number of elements of operand
fuzzy sets. It takes 60-70 msec to construct a fuzzy
set of several gradefelement pairs and assign it to a
furzy set name. This is because firstly we must mani-
aulate chavacter strings by FORTRAN and search the
Grade Area [GA) or the Element Area {EA] etc. to share
grades or elements, and secondly a computer musi compute
the addresses of memory since FSTDS {s prasented by an
array in FORTRAN. But in comparison with the construc-
tion of fuzrzy sets {i.e., the opevations of FSET and
5ET), the other gperations which manipulate only the
painters in FSTDS but search ngp areas are rather quickly
execueted, This fact is found by use of the system
SUSROUTINE CLOCKM available in FORTRAN on FACOM 230-455
computer. Even rewriting fn assembly Janguage those
parts of FSTOS system which access FSTDS so frequently
will very significantly improve efficiency.

We can define L-fuzzy sets, level m fuzzy seis,
type n fuzzy sets, and more generalized fuzzy sets in
FSTOSL, but we can not manipultate all of them, since
211 operations defined for ordinary fuzzy sets cannot
he defined for them in nature. Operation methods for
some of them have been formulated by Goguen!? and Zadeh'?,
so we are now jmplamenting their facilities.

10.
11.
12.

13,
14.

10,

16.

An FSTOSL program written with only prefix operators
is not so readable or understandablae, sp we are conside-
ring the introduction of infix cperators. This is attained
easily by modifying the interpreter a littie.

We have used FSTDS as the representation of fuzzy
sefs and fuzzy relations, but the consideration of more
suitable representation methods may be needed.

To solve a given program, we can write & program in
FSTDSL wsing the cancepts of fuzzy sets and fuzzy relatioms

‘We can use FSTDS system to construct a fairly large scale

system, for we need not pay attention to the representa-
tion of fuzzy sets and fyzzy relations and the computa-
tjons of fuzzy set operations, and we can describe complex
and detailed processing in FORTRAN,

As applications of FSTDS system, we are now imple-
menting an Approximate Reasoning System and a Fuzzy Graph
Mantpulation System,

FSTDS system will find various applications in the
fields in which we have to deal with fuzzy information
and fuzzy knowledge in nature.
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APPENDIX

Ke shatl briefly present the definitions of varfous kinds

Some operations are n-ary but

we will define them as binary operations for simplicity.
The syrbols v, u, F and R, with or without subscripts,

of fuzzy set gperations.

are used genarally to denote a wembership function, an
element of a universe of discourse, a fuzzy set and a
fuzzy relation. , respectively.
w with or without subscripts as elements of the other
universes of discourse. The symbols v and A denote the

maximum and the minimum, vrespactively, and -, + and - are

the ordinary multiplication, addition and substracticn,
respectively.

{1) Complement:

“IF = ; 1 = uF{ui)fui (A1}

(2 rion:

Il

FyUFy = § uF](ui] v uFZ(ui]fu'i {8.2)

{3} Intersection:
F]I\ Fp = § uF1(u1} A uFB(ui]."ui (A.3)

{4} Froduct:

FyoFyp = ; “F]("i)'”Fz{”i}f“i (A.4)
(5) Algebraic Sym: {A.5)

F1*F2 = ; uF1(Ui} + UFz{ui) - HF1(U1}'HF2(ui)iui
{6) Absolute Difference:
Fi 2 Fp = ; qu1{ui) - qutui)Ifui {ﬁ-ﬁl

wh~ x| denotes the absclute value of real number x.

{7} Bounded-Sum:
FL®F, = ; 1A (HF1{"11 + “szui})!ui (A7}
{8) Bounded-Difference:

FR8F, = 2: ov(uF1(ui) - IJFE{U{))KUT- (R.8}

{9} Composition: {4.9)
Ry 0 R, = ¥ (g (u;,v-) A {v.,w )1/<u, w >
1% % 1§k ¥ g Ly ovgh A b, 15 M Ay

{10} Converse ReTation:

S
R _—igj iplvsoug)feu vy (A.10)

{11} Image:

R(F) = fu,) A VMY, {A.11}
{F) g g {“F uy uR(u1 VDI,

{12} Converse Image:

We yse the symbols v and (16) Restriction:

-1 .
R™(F) ; g fuR(Uith) A UF{VJ))KUT (A.12}
{13} Domain:
domatn{R} = g g ”R(Ui’vj]fui {A.13)
(14} ﬁéngé:
range(R) = ¥ v u {u, v, )/v, (A.74)
g i R*17737 )
(15} Cartesian Product:
F.I * F2 =iI.UF (ui] A ug (vj)f<u1.vj> {h.15)
W01 2
rs(RF) = T wplugovy) Auglueupvg> (A6
i
_'(17] u-Tevel Set:
F,=(u | welu) 2 a3 A&7
{18) Scalar Operatian:
poxF=guox (e )i (A.18}
1
where x denpotes an arbitrary binary operation.
(19} Exponentiation:
X X
F* = g (”F(”il) fuj {A.19)
where x 1s a real number.
{20} Bilation:
dil(F) = FO'® = ¥ ATG, T/u, (A.20)
i
{27) Concentration:
con(F} = F* = T luplug N7y, (a.21)
{22) Contrast Intensification: -
2.5% e O(u)g0.5
cint{F) = 2 {h.22)
Ueﬂ{UeH].uﬂﬁgﬂmg
- {23) Rormalization:
norlF) = T wplu )i /ey (A.23)
i

1

where 1 is the reciprecal of the maximal grade of F.

(24} Cardinality:

cd(F) = welug) + uglup) + oo+ uplu) (A.28)

{25) Support: Fuzzification:

SF(FK) = U uFfuL)-K(u1} (h.25)
5 )]
where K is a kernet set of kernels K{u]), - ,K{un).
(26} Grade Fuzzification:
(A.28)

GF(F;K} = ; ]{(u.]];ui

where K 15 a kernel set of kernels K(ul}, cies K(pn).

Miziontlo, > 7



