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Some Properties of Fuzzy Sets of Type 2
Masanaruy MizuMmoTo AND KokicHl TaANAKA

Department of Information and Computer Sciences, Faculty of Engineering Science,
Osaka University, Toyonaka, Osaka 560, Japan

'T'he concept of fuzzy sets of type 2 has been defined by L. A. Zadeh as an
extension of ordinary fuzzy sets. The fuzzy set of type 2 can be characterized
by a fuzzy membership function the grade (or fuzzy grade) of which is a fuzzy
set in the unit interval [0, 1] rather than a point in [0, 1].

This paper investigates the algebraic structures of fuzzy grades under the
operations of join u, meet M, and negation | which are defined by using the
extension principle, and shows that convex fuzzy grades form a commutative
semiring and normal convex fuzzy grades form a distributive lattice under v
and n. Moreover, the algebraic properties of fuzzy grades under the operations
w and @ which are slightly different from u and n, respectively, are briefly
discussed.

1. INTRODUCTION

Since Zadeh (1965) formulated the concept of fuzzy sets which can deal
with ill-defined objects, a number of researchers are engaged in the studies
on fuzzy sets and their applications to automata, languages, pattern recogni-
tions, decision making, logic, control, and so on. Against these many
applications of fuzzy sets, the theoretical considerations on fuzzy sets theory
are also earnestly studied by some fuzzy theorists such as Goguen (1967),
Brown (1971), and DeLuca and Termini (1972). In addition to these studies,
Zadeh (1973, 1974) recently proposed the concept of fuzzy sets of type 2
as an extension of fuzzy sets. Using the concept of fuzzy sets of type 2,
fuzzy linguistic logic (Zadeh, 1973, 1974) and fuzzy—fuzzy automata and
grammars (Mizumoto and Tanaka, 1974) are formulated.

A fuzzy set of type 2 is defined by a fuzzy membership function, the
grade (that is, fuzzy grade) of which is a fuzzy set in the unit interval [0, 1]
rather than a point in [0, 1]. In the definition of ordinary fuzzy sets, the
range of membership function is [0, 1] and the operations to the grades
of fuzzy sets are “max” and “min.” As is well known, the interval [0, 1]
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forms a linear ordered set or a distributive lattice under max and min. Thus,
ordinary fuzzy sets form a distributive lattice (Zadeh, 1965).

In this paper we investigate the algebraic structures of fuzzy grades
(in other words, fuzzy sets of type 2) under the operations of join u, meet r,
and negation "] for fuzzy grades. Main results are: Convex fuzzy grades
form a commutative semiring; normal convex fuzzy grades form a distributive
lattice.

Furthermore, the algebraic properties of fuzzy grades under the operations
of join w and meet w, which are defined differently than u and n, are briefly
discussed.

2. Fuzzy Sers oF TYPE 2
We shall briefly review some of the basic definitions relating to ordinary
fuzzy sets for the purpose of fuzzy sets of type 2, which are discussed later.
Fuzzy Sets. A fuzzy set A in a set X is characterized by a membership
function p, which takes the values in the interval [0, 1], i.e.,

par X — [0, 1]. (1)

The value of p, at x, u,(x), represents the grade of membership (grade,
for short) of x in 4 and is a point in [0, 1].
A fuzzy set A is represented as follows.

A = pa(x)xy + palxe)/xe + - + pa(xn)/x,
= Z () x; s xeX, 2)

where the operation 4 stands for logical sum (or).
The operations of fuzzy sets are defined as follows,

Containment.

ACB < py(x) < pa(x), VxelX; 3
Union.

AV B < puup(%) = pa(®) v pa(x); (4)
Intersection.

AN B <> pynp(*) = pa(®) A pa(x); ®)
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Complement. -
A e pgx) =1 — py(*); (6)

where v stands for max and A stands for min.
The grades for ordinary fuzzy sets are easily proved to satisfy the following
properties.

Ry (reflexive law). )

Ba < BB,  pB K pa > pa=pg  (antisymmetric law). 8)

pa < pp, b < po > pa S pe  (transitive law). €)

BaVta = p Ag idempotent laws 10

HaNpPag =y ( s ) (10)

BaV g = ppVba (commutative laws). (11)
HaApp=pp Ay

(a v pig) V o = pa v (us V pic) (associative laws). (12)
(Ba A pB) A pe = pa A (ke A pio)

paA (paV pp) = pa -

absorption laws). 13

paV (pa A pg) = pa ( P ) (13)

pan (ps v pc) = (pa A ps) v (R4 A pe) (distributive laws). (14)
raV (s A pc) = (pa Vv pg) A (pa Vv pic)

ps =u,  (involution law). (15)

Pa¥ by =pah 'U'E; (De Morgan’s laws) (16)
HaApp==piV 1E

pav0=py, panl=np 17

4 4 4 A (identity laws) ()

}LAV1=1, ,lLA/\0=0 (18)

pavpr 7 1 (failure of complement laws).
patpg#0 (19)

From the above properties of grades for fuzzy sets, grades constitute
a distributive lattice under v, A, —, but do not form a Boolean lattice because
of the failure of complement laws (19). The same holds for ordinary fuzzy
sets,

In the above definition of ordinary fuzzy sets, the grades take the values
in the unit interval [0, 1]. In reality, however, we often encounter the situation
that the prade itself is frequently ill-defined, as in the statement that the



FUZZY SETS OF TYPE 2 315

grade is “high,” “low,” “about 0.8,” “middle,” “not high,” or “very low.”
To explain this fact Zadeh (1973, 1974) formulated a fuzzy set of type 2
whose grade is a fuzzy set in the interval [0, 1] rather than a point in [0, 1].

Fuzzy sets of type 2. A fuzzy set of type 2 A in a set X is the fuzzy set
which is characterized by a fuzzy membership function u, as
pa: X — [0, 11, (20)
with the value p,(x) being called a fuzzy grade and being a fuzzy set in
[0, 1] (or in the subset [ of [0, 1]).

Note. In this paper it is assumed that ] is a finite set. However, the
algebraic properties of fuzzy grades in | discussed later are satisfied in the
case where [ is continuous.

Note. Since the grade of fuzzy set of type 2 is a fuzzy set in JC [0, 1],
the ordinary fuzzy set is renamed as a fuzzy set of type 1. By analogy with
this we can define a fuzzy set of type n (n = 1, 2,...) by the following:

Jn—l

pa: X —[0,1]" 1)
where J;, J5,..., Ju_ are the subsets of [0, 1].

ExampLE 1. Suppose that X = {Susie, Betty, Helen, Ruth, Pat} is a set
of women and that 4 is a fuzzy set of type 2 of beautiful women in X. Then
we may have

A == beautiful = middle/Susie + not low|Betty + low/Helen
+ very high{Ruth + high/Pat, (22)

where the fuzzy grades labeled middle, low, high are assumed to be fuzzy
sets in | = {0,0.1,...,0.9, 1} C [0, 1] and, for example, are expressed as
follows.

middle = 0.3/0.3 + 0.7/0.4 - 1/0.5 -+ 0.7/0.6 4 0.3/0.7. (23)
low = 1/0 + 0.9/0.1 + 0.7/0.2 + 0.4/0.3. (24)
high = 0.4/0.7 4 0.7/0.8 + 0.9/0.9 + 1/1. (25)
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Moreover, fuzzy grades named not low and very high are defined from fuzzy
grades low and high by using the concept of linguistic hedges (Zadeh, 1972).1

not low = 0.1/0.1 - 0.3/0.2 + 0.6/0.3 + 1/(0.4 + 0.5 4 -+ 4 1). (26)
very high — 0.16/0.7 -+ 0.49/0.8 + 0.81/0.9 + 1/1. 27)

It should be noted that not low and | low, which is defined later, are a
different concept.

The operations of fuzzy sets of type 2 are defined by using the extension
principle by Zadeh (1973).2

Let p (x) and pg(x) be two fuzzy grades (that is, fuzzy sets in J C [0, 1])
of fuzzy sets of type 2,4 and B, respectively, represented as

pa(®) = flu)uy + fug)fuy -+ -+ + f(un)en
= Zf(“z)/uz ’ u; € J, (28)

p(x) = glwn)/wy + gwg)wy -+ +** + §(Wm)/wm
= ;g(w;)/w; , we], (29)

where the functions f and g are membership functions of fuzzy grades

(fuzzy sets in J C [0, 1]) pa(x) and py(x), respectively, and the values f(u;)

and g(w;) in [0, 1] represent the grades for #; and w; in ], respectively.
Thus the operations for fuzzy sets of type 2 are expressed by the following.

Union.

AV B < pp(%) = pa(*) L pa(*)
= (S st v (3 g
— ¥ (f) Mgy w30

1 Generally, let 4 = 3; ua(x;)/x; be a fuzzy set, then we have: not 4 = %; (1 -
paxw;, very A = A% = T pa(x.)*[x: .

2 In general, let 4 = ¥, pa(x,)/%; and B = 3 up(x;)/x; be two fuzzy sets in X
and let * be a binary operation defined in X, Then the operation * can be extended to
fuzzy sets A and B by the defining relation (the extension principle).

A * B = (Z; pa(xs)/x;) * (X5 pa(x5)/x)

= Ty (palx:) A pa(x))(xe * x9),
where A stands for min.
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Intersection.
AN B < pynp(x) = pa(x) 0 pp(x)
= (S fiu) r (£ st
=2, (F(ws) A gle0y))(u; A ;). 31)
Complement. ‘
A = pg(x) = Tlpa(x)
= 2 f @1 — uy), 32)

where v and A represent max and min, respectively. We call the operations
for fuzzy grades, that is, u as Jjoin, 1 as meet, and " as negation hereafter.

Remark. The grade, say, p,(x) = 0.8 of ordinary fuzzy set can be
represented as p,(x) = 1/0.8 by using the notation for fuzzy grades.
Therefore we can see that the above operations for fuzzy grades are an
extension of those of grades for ordinary fuzzy sets.

ExampLE 2. Let J = {0,0.1,...,0.9, I} and let fuzzy grades ta(x) and
#a(%) be given as
pa(x) = 0.5/0 4 0.7/0.1 -} 0.3/0.2,

ps(x) = 0.9/0 4 0.6/0.1 4 0.2/0.2.
Then we have

pa(®) U pa(®) = (0.5/0 + 0.7/0.1 -+ 0.3/0.2) u (0.9/0 -+ 0.6/0.1 -- 0.2/0.2)

0.5409 0.5 A 0.6 0.5A0.2
T 0vo + OvO.1 + 0Ov0.2

0.7A0.9 . 0.7 A 0.6 o+ 07702
0.1vo0 0.1vo0.1 0.1v0.2

03A09 03A06 03402
T02vo T 02vol To03voa

= 0.5/0 + 0.5/0.1 + 0.2/0.2 + 0.7/0.1 + 0.6/0.1 - 0.2/0.2
+0.3/0.2 + 0.3/0.2 -+ 0.2/0.2

—=0.5/0 + (0.5 v 0.7 v 0.6)/0.1
+(0.2v0.2v 0.3 v 0.3 v 0.2)/0.2

= 0.5/0 -+ 0.7/0.1 + 0.3/0.2.

+
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Similarly, we have

(%) 1 pa(x) = 0.7/0 + 0.6/0.1 4 0.2/0.2,
“palx) = 0.5/1 + 0.7/0.9 + 0.3/0.8.

Remark. As fuzzy grades are fuzzy sets in JC [0, 1], we can obtain
tra(%) U pp(x), pa(®) N pa(x) and p (x) from (4), (5), and (6), respectively.
However, it should be noted that the operation of U is different from that
of u. The same holds for N to n, and — to ~]. For example, from the above
example 2, it is obtained that

pal®) U pa(x) = 0.9/0 +0.7/0.1 -+ 0.3/0.2,
pa(®) O pa(x) = 0.5/0 + 0.6/0.1 -+ 0.2/0.2,
fia(®) = 0.5/0 + 0.3/0.1 +0.7/0.2 + 1/(0.3 + 0.4 + -+ + 1).

Thus we find that p,(x) U pp(x) is not coincident with p,(x) U pp(x). The
same is true for (&) M pp(x) and py(x) N pp(x), and pu(x) and Jp(x).

3. ALGEBRAIC STRUCTURES OF Fuzzy GRADES UNDER U, N, AND |

From the fact that the algebraic structures of fuzzy sets of type 2 under
the operations of union U, intersection N, and complement ~ are dependent
on the algebraic structures of fuzzy grades under the operations of join u,
meet M, and negation 7, we shall discuss what kinds of algebraic structures
fuzzy grades form under u, n, and 7.

It should be noted that the grades of ordinary fuzzy sets form a distributive
lattice and that the fuzzy grades of fuzzy sets of type 2 form a distributive
lattice under U, N, and - of (4), (5), (6).

We shall start from the following theorem.?

TuroreMm 1. Under the operations u, n, | in (30), (31), (32), arbitrary
fuzzy grades in [ satisfy such laws as idempotent laws (10), commutative laws

3 The satisfaction or failure of each law for fuzzy grades will be discussed by making
reference to (10)—(19), so the readers should read them by replacing V by u, A by n,
and ~ by "1.
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(11), associative laws (12), involution laws (15), De Morgan's laws (16); but
do not satisfy absorption laws (13), distributive laws (14), identity law (18),
complement laws (19). The part (17) of identity laws, however, is satisfied, i.e.,
panl =p, and pa 0 =p, (33)

are satisfied *
ExaMPLE 3. At first we shall show the examples of fuzzy grades which

do not satisfy the absorption laws, the distributive laws, the identity law
(18), and the complement laws.

Failure of absorption laws. Let pu, and pp be convex fuzzy grades (which
are defined later) as

14 = 0.3/0 + 0.4/0.1 -+ 0.6/0.2 1 0.8/0.3 - 0.9/0.4,
pp = 0.1/0 + 0.2/0.1 + 0.3/0.2 4~ 0.4/0.3 4+ 0.5/0.4,
where [ is {0, 0.1, 0.2, 0.3, 0.4}. Then
a1 (pa U prg) = g U (g 0 pp) ®
= 0.3/0 + 0.4/0.1 + 0.5/0.2 4 0.5/0.3 - 0.5/0.4
# pig s (34)

Failure of distributive laws.

g = 0.9/0.1 + 0.2/0.2 + 0.1/0.3 < 0.8/0.4,
pp = 0.4/0.1 + 0.5/0.2 + 0.6/0.3 + 0.3/0.4,
pe = 0.2/0.1 4 0.3/0.2 -+ 0.6/0.3 -+ 0.8/0.4.

Then we have

a1 (U pe) = 0.6/0.1 4 0.3/0.2 + 0.6/0.3 -+ 0.6/0.4,
(a1 i) U (g 1 pe) = 0.6/0.1 -+ 0.5/0.2 + 0.6/0.3 - 0.6/0.4.

Thus, we see that the distributive law is not satisfied. The same holds for
the case in which U and n are interchanged.

¢ We shall hereafter abbreviate p4(x) as 4 for simplicity,

® The expression of (34), Le., pa M (4 U pg) = pa U (up O pg), is satisfied for
any fuzzy grades in spite of the failure of the absorption laws. See the proof of
Theorem 1 denoted later.
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Failure of a part of identity laws. Let
pq = 0.7/0.1 4+ 0.5/0.2 - 0.8/0.3.

"Then, noting that the numbers 1 and 0 are represented as 1/1 and 1/0,
respectively, we obtain

paul =08/1#1,
g 10 =028/0 0.
Thus, it is shown that part (18) of the identity laws is not satisfied.

Failure of complement laws. Let
wy = 0.8/0.1 + 1/0.2 4- 0.5/0.3,
then the negation of p, is given as

I, = 0.8/0.9 -+ 1/0.8 + 0.5/0.7.

Thus we have

g U (Tlpy) = 0.8/0.9 + 1/0.8 + 0.5/0.7 # 1,
pa 1 (TIpa) = 0.8/0.1 4 1/0.2 + 0.5/0.3 = 0.
Next we shall prove Theorem 1 saying that the idempotent laws, com-

mutative laws, associative laws, involution laws, De Morgan’s laws, another
part (33) of identity laws, and (34) are all satisfied for arbitrary fuzzy grades.

Idempotent laws. We shall prove p, U py = 4 . Let p1, be represented as
Fea ZZf(”z)/"u u; € J.
Then from (30), p, U p, is given as follows.®

Bpa U pag = Zf("z) flug)u; v ou; .

Let h(a) be the grade of a € Jin pu, U 4, then h(a) will be represented as?

ha)= 3 flw) f(w) (39)

u,-vuj=a

¢ In this and the subsequent proofs, we use @ + b or @ V b for max{a, b}, and a - b
or a A b for min{a, b}. In addition the notation ¥, @; represents a; + @ + ** + an
(or a, Va, V- Va,). Furthermore, the laws which illustrate the derivation of
expressions are laws for ordinary grades (not fuzzy grades).

7 In other words, pq U pa = Tues B(a)/a.
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By the way, »; and u;, which satisfy u; v u; — a, are given as

ui=a§ Eui<a
uy <L a

U; = a
Thus, (35) will be expressed as
h(a) = 3 f(w) flu) + Y, f(ws) f(w)

wa e
=f(a): Y flu)+f(@) Y flu)
U0 u;<a
= f(a) + f(a) -+ from absorption law b - (b + b, - --) = b
= f(a).

Therefore we have p, U p, = p, from k(a) = f(a) for any a in J.
The same holds for g, M, = p, .

Commutative laws. p, U pg = pg U p .
Let py and pp be

Ha = Zf(”z)/”z ’ My = Z glus)fu; ; (36)
then we have
Ma U pp = (Z f(uz)/uz) u (Z g("f)/”o‘)
= Zf(“w:) “gu)lu; v u;

= Zg(“:) fu)fu; v ou,

= (T ) v (5 )

= MUp Lt K4 -
The same holds for p, N py = pg 1 py, .

Inwvolution law. 17\, = py. From (32) we have

Tra = Y f@)(1 — uy).
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Thus,
T a) = 3 f)I(L — (1 — wy))

= Zf(ui)/ui = PA

Associative laws. p, U (up U pe) = (g U pg) U pe . Let p, and py be
as in (36) and let ue = 3 A(uy)/u;, , then we obtain that
k

pa U (up U pe) = (Z f("z)/"z) u (Zk g(uy) * h(ug)fu; v uk)
= T ) (et BV a5 v )

= Z (f (us) - g(u5)) = h(ue)[(us v u5) v g,

R
= (ZZ; J (i) - glu)u; v ”a‘) u (; }’(uk}/“k)
= (pa U pp) U pc

The same holds for p, m (up 1 pe) = (py N pp) N pe .
De Morganr’s laws. (g U pg) = (") 1 (T lpa).

) = 7 (7)o v )
= 3 fw) g/t = (v )
=) (1 =) 7 (1= 1)
= (S @ =) m (T a1 — )

= (Twa) 0 (Tps)-

The same holds for TJ(u, M pg) = () U (T lus)-
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Another part of identity laws. p,nl = p,.

pan 1= (Zf(u,)/u,) n1/1

=% (@) A DJ(w A 1) = ¥ Fla)uy

:II’A'

The same holds for p, U 0 = p,.

Proof of (34).  pa 1 (pa U pp) = pa U (uy 1 pp).
ta 1 (g U py) is given as follows by omitting the subscripts of u,, ;, 2,
for simplicity.

pan(pavps) = 3 f) f(w) g=)u-(wv =)
uw,z2€J
Let p(a) be the grade of a € Jin puy 1 (u, U puy), then p(a) can be represented
as

p@)= Y f@)f@)ge). (38)

u* (Wwvz)=a

Furthermore, u, w, z€ J which satisfy u - (@ v ) = a can be divided
into four parts, that is,

U =a uU—=aq u_=a u=a
wza or w : free or w=a or w<<a) (39
2 free T=a z2<a 2=a

Thus (38) is expressed as follows in view of independency of u, w, and z
in each part.

pa) = Z fQ) (@) 8(z) + 3 fw) - f() - g(2)
"z Z3a

+ 2 W) @) 8(x) + Y f(w) f(w) - g(z)

Uz uza
w=a wga
2ga z2=q

=f@): Y f(@) Y g +f@) Y f(w): Y &)

wia z z>a

+f@)- 2 @)Y g+ Y fw) Y f(w)- ga)

uza e uza wga
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= f(a) - Zg(z) +f(@) - X &)
230
(--- from absorption laws)

+f@) Y g@) + ) ) Y f(®)-z(a)

zga upa wga

=f(a)- Zg(z) + 2 f@) - ) f(@) - ga) (40)

uza wea

In a similar way, p, U (n, 1 pp) is as follows.

pat(panps) = Y [ f@) g@)fuv(w:z2) (41)

U, W, 26T

Let g(a) be the grade of a€ J in py u (ny 1 pp), then g(a) is

ga) = Y [ f(w) g 42)

uv{wrz)=a

u, w, 2 in J such that u v (w ' 2) = a are also divided into four parts as

u=a u=—a ua u<a
w < a or w : free or w=a or w>=a). (43)
2 free 2<a 2>=a T =a
Thus, ¢(a) is as follows.
g(a) = f(a)* Y f(w)- Z g(2) + f(a) - Zf (w)* Y. &(2)
wga zgae
+f@) Y [ Y &=+ 3 fw) - Y fw)-ga)
uga 2za uge wRe
=f@) L el +/@ ¥ &)
2ga
+f(a)- Y g=x) + Y fw)- Y f(w)-gla)
z>0 uga wra
= f(a)- Zg(Z) + 2 fw) - Y f(w) - g(a). (44)
uga wRa

Therefore, from (40) and (44) we get p(a) = q(a) for any a € J, which

implies g N (14 U pp) = pg U (g N pra).
This completes the proof of Theorem 1. |
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Next we shall define order relations on fuzzy grades and show that
arbitrary fuzzy grades form a partially ordered set under the order relation,

‘THEOREM 2. If an order relation = over arbitrary fuzzy grades in [ is
defined as

PAS pp <> pa N pp = pa, (45)

then the set of arbitrary fuzzy grades forms a partially ordered set under .
Similarly, let = be an order relation given as

BAS pp < pa U pg = g, (46)

then the arbitrary fuzzy grades also form a partially ordered set under =. In
general we have = # C.

Progf. We shall show that any fuzzy grades in J under = satisfy the
reflexive law (7), the antisymmetric law (8), and the transitive law (9).
It should be noted that the same holds for = and the inequality of = and &
is proved from the failure of the absorption laws of arbitrary fuzzy grades.
From the idempotency of fuzzy grades, i.e., p, M p, = p,, we have the
reflexive law p, & uy . Suppose that u, & up and pug C py, , then from the

commutativity of r, the antisymmetric law is obtained, namely,

Py = phg O g = pp N fhy = lp.

Finally, let p, = up and up = pe, then the transitive law is obtained as
follows in view of the associativity of n, i.e.,

Ba = pg N pg = g0 (g N pe) = (py M pp) Mpe = pg M pe

Thus we have py C pe .

Hence, arbitrary fuzzy grades in [ satisfy the reflexive law, the associative
law, and the transitive law under =, so the set of arbitrary fuzzy grades
in J constitutes a partially ordered set under =. ||

Next we shall define a convex fuzzy grade and a normal fuzzy grade
as a special case of fuzzy grades and show that convex fuzzy grades form a
commutative semiring and normal convex fuzzy grades form a distributive
lattice under u and n.

Let J = {wu, us,..., u,} be a subset of [0, 1] which satisfies #, < u, <



326 MIZUMOTO AND TANAKA

< u,. A fuzzy grade p, = 3, f(u;)/u; in ] is said to be convex if for
any integers 4, k with 7 <{ k, the following is satisfied, 1.e.,

f(w;) = min{f(u;), f ()},® (47)

where j is any integer which satisfies 7 <{ j << &.
A fuzzy grade p, in J is said to be normal if

max f(u;) = 1. (48)

Otherwise it is subnormal. Furthermore, a fuzzy grade which is convex
and normal is referred to as a normal convex fuzzy grade.

ExaMPLE 4. Various types of fuzzy grades in | = {0.1, 0.2, 0.3, 0.4} are
listed as follows.

pa = 0.8/0.1 + 0.3/0.2 + 0.5/0.3 4 0.9/0.4  (subnormal, nonconvex).
ta = 0.3/0.1 4 0.6/0.2 + 0.8/0.3 + 0.5/0.4  (subnormal, convex).

w4 = 0.7/0.1 4 0.2/0.2 + 1/0.3 + 0.3/0.4 (normal, nonconvex).

4y = 0.5/0.1 + 0.8/02 +1/0.3 + 0.7/0.4  (normal, convex).

At first we shall discuss some properties of convex fuzzy grades under
u, r,and .

THEOREM 3. If w, and py are convex fuzzy grades in ], then p, U ug,
a4 T pg, and w4 are also convex.

Proof. Tt is obvious from the definition (32) that ~|u, is convex. We
shall show that p, U pp is convex if u, and up are convex. We have the
following equations from the assumption that fuzzy grades p, = e f(4)/u
and pg = Y yes g(w)/w are convex fuzzy grades in J.

flay) = fla) - f(an), (49)
glay) 2 g(a) - g(ay). (30)

where a;, a;, a; in ] are any numbers such that @; < a; < a;, and the
operation - denotes min(A).

8 As we assume that [ is a finite ordered set, this definition of convex fuzzy grades
(or convex fuzzy sets in J) is a special case of that of convex fuzzy sets by Zadeh (1965).
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14 U pp is given as

pavipn = Y @) g@)uv w. (s1)

u, weJ
Let A(a) be the grade of @ € J in fuzzy grade py U pp, then A(a) is
ha)= 3, f()-g@®) (52)
uvw=a

u and w which satisfy # v @ = a are divided into two classes as
{u=a w<a or {u < a, w=aj.
Thus k(a) is rewritten as

ha) = f(@) T g@) +8(@) ¥ @), 53

wga uga

Therefore, substituting a; , a; , a; into a of k(a), we have three expressions
such that

h(a;) = f(a;) - é g(w) +g(a;) - :; J(@), (54)

hay) = f(a)) 3, g(w) +ga)* Y f(w), (55)
wa; uga;

h(ay) = fla) - Y g(w) +gla) - Y f(w). (56)
WLy ULy

The goal of the proof is to show the following inequality under the assumption
a4 < a5 K a.
ha;) = ha;) A Way). (57)

From (55) and (56) we obtain
h(a)) n b(ay) = f(a) " fl@) - Y gw): ) gw) -~ ®
wga; way,

+gla)-gla) Y fw): Y f@ - ®

ugay ULy

+fla) - Y f) - g(a) - Z gw) - ©

uay, wa;
+fla): Y f) -g@): ) gw) - ®
ugay; way,

=0+®+0+0.
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Firstly, from (49) and the assumption a; <{ @;, @ 1is as follows.

® < flas) - Y g(w).
w<ay

Similarly, @ 1s
<gla) Y f@).

UL
© is given as follows from the absorption law and the convexity of g (that is,
#s)?

© = fla) " gla) * 3. &) < f(a) " g(ay).

wga‘-
Similarly,
O < f(a) - gla).

Summing up the right-hand sides of the four inequalities obtained above,
the following expression is obtained.

h(a) A Wa) = ® +® + O + O®
<fla): Y gw) +g@) - 3 f@) +fla) - g(a))

wag ugay
-+ f(a;) - g(a;)
= flay)+ Y, @) +gla) Y f(w

way Uy
<fla) - Y gw) +gle) - Y fw) - froma; < g
way UL,

= h(a;).

Thus we have shown that h(e;) = h(a;) A h(ay).
The same holds for the convexity of o, N pug. |

Tueorem 4. For convex fuzzy grades in |, the distributive laws are
satisfied, namely,

Ba N (s U pe) = (pa 1 pa) U (kg 1 e, (58)

pa U (pa Mpe) = (pa U pp) 1 (kg U pe) (59)

SIf a; > a;y > @iy > - and a; < a; < az, then gla) > (gla) + gla;y) +
gla;5) + ) - g(ap) is derived from the definition of convexity of (50).
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Proof. We shall prove that the distributive law (u, 1 pp) U (g N pe) =
w1 (g U pe) is satisfied if p, , pp, pe are convex fuzzy grades in J.
Let convex fuzzy grades p, , pg, and pe be

Ha = ij(u)/u,
KB — ZJ g(w)/wy
no = 3. h(z)lz.

zeJ

From the definition of (1, N pg) U (1, N pe), we obtain
(a1 pg) U (pa M) = 3 f(w) - g(w) - f(W') - h(2)/(u - w v u' - 3). (60)

Let p(a) be the grade of a€ J in fuzzy grade (u, N pug) U (uy 0 pe), then
p(a) 1s as follows.

@)= 3 f@)-g@) f@)- k). (61)

U wvu’ e=a
Thus, u, w, ',  which satisfy u-wvu' -2 =ais

{u-w=auw -2<a o {W-z=aguwa

and, more precisely, can be divided into eight classes such as

u=a uU=a u=a u>=a
w = a w=a w=a w=a
) or , or , or ,
u < a u' : free u < a u' : free
z : free g2 < a 2 : free z<a
u<a u: free u<a u : free
w : free w<a w : free w < a
or , or , or , or , .
u =a uw =a u >=a u =a
Z=a 2 =a 2=a 2 =a

Therefore, noting that u, w, #’, z of each class are mutually independent,
we have from (61) that

pl@)= ¥  f()g@) f() k=)

urwvu'rz=a

—0+@0+0+EH+®+O®+@ +I[8l
where (1), (@),..., [8] are given by the following.
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@ = 2 fw) g@) (&) )

UG
w3a
u’ga

=f(a)-

=f@-

® =f(@-
= f(a)-

X g 3 f) - Y k)
w2a u'ga
Y g(w)- Z A(z) -+ from the absorption law.

wra

2 &(w) Zf @) 2 hz)
wra zga
> g(w) - Y, h(2) - from the absorption law.

wia zga

®@=0+@=f@" ) s@)- Zh(z)

@ =gla) -
= g(a)

= g(a)

w2a

Zh('n’) Y fw- Y f@)

uza u’'ga

Y ) [f@- T fw) + ¥ fw)- Y )

u'ga u>a u'ga

* Y h(z) - f(a) -+ from the absorption law and the

convexity of f.10

@ =®+®
=f(a)+ ). g(w)" Z h(z) + f(a) - g(a) - Z h(z)
wpa
= f(a) - ég(W) 2 i(3)-
=g(a) Y h(z) Y f()- Zf(u’)
zga uRa
=g(a)- ) M2) - Y f(w)
2ga uxa

10 From the convexity of f (that is, u4) we have T f(u) - ¥ f(u') < f(a).
u>a wga
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Moreover,
® =3 fw- Zg(w) f@) -} k(=)
uga s2a
= f(a) Z g(w) - ). h(z) -+ from the absorption law.
Z2a
© = Zf(“) 2 8@) - fa)- Y h(z)
wga z3a
=f(a)- Y g(w): ) h(z) - from the absorption law.

wga 2>a

D=®+® =f@- Zg(W) Y (z).

Zza

@=% f- Zg(W) 2 f@) - ha)

U u'>a

= f(a) - Y, g(w) - h(a) -+ from the absorption law and the

convexity of f.

12 =a+@
=f(a)- Z gw) - Y h(z) + f(a) - Z g(w) - h(a)

720

= f(a)- Zg(W) Y. (=),

z3a

(8] = Zf(u) 2 2@) - ), f() - ha)

wea u’'a
= 2 f@)- } g(w) - ha).
u'za wLa

Hence, p(a) is

P =D+D+B+EH+G+® +@+3
= 0] + [4] +[12] + [8]
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=fa)- Y &@)- Zh(z) + @) Y Kz Y f)

w>a zga uzae

+f(a) - Zg(W) Y k) + ) fw) - Y gw) - ha)

z20 uRa wga
On the other hand, p, 1 (up U pe) is given by
pan (up U pe) =3 f(u) - g@)  b(@)u - (w v 2).

Thus, the grade g(a) of ae Jin p, N (up U pe) is as follows.

gay = Y, f(w)g(w) - h(z).

w-(wvz)=a

u, w, & with u ' (w v 2) = a are

uUu=a u=—a u=a u=a
w>=a or w : free or w=a or w<a).
2 free 2=a < a T=a

Thus, ¢(a) is
g(a) =f(a)* ¥ &) Z h(2) + f(a) - Zg(w) 2 h(@)

w3a 220
+g(a) - é J@)- g h(z) + é f) - Y g(w) - h(a)

= p(a).

This completes the proof of (u, M pgp) U (ny N pe) = 1y M (up U pe)- A
similar method is applicable to the proof of (u, U wp) N (kg U o) =

ta U (s 1 o). B

Note. It is noted that the convexity of fuzzy grades uy and p. was not
used in the process of the above proof in spite of the use of the convexity
of py (or f). Therefore, we can say that if p, is convex fuzzy grade, then
the distributive laws can be satisfied even if uz and p. are not convex fuzzy

grades.

TueoreM 5. Convex fuzzy grades in | form a semiring (more precisely,

a commutative semiving with identities) under U and n.

Proof. Convex fuzzy grades in [ are distributive with respect to 1 and n

1 u%ﬂf(u) = Z fl)
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(Theorem 4) and form a commutative semigroup with identity under u
and n, respectively (Theorem 1 and 3), where the identity is 1/0 (=0)
under u and 1/1 (=1) under n, respectively (see (33)). This concludes the
proof. ||

Note that the convex fuzzy grade ¢ = >, 0/u is regarded as zero element
under u and n, respectively. That is to say,

pald=¢,  pang=¢ (62)

Remark. As convex fuzzy grades do not satisfy the absorption laws in
general (see Example 3), they cannot constitute a lattice (more precisely,
a distributive lattice).

Next we shall discuss the properties of normal fuzzy grades under u
and n.

THEOREM 6. If p, and pg are normal fuzzy grades in J, then p, U ug,
Ha M g, |4 are also normal.

Proof. 1t is obvious from the definition of normal fuzzy grades (48). [|

THEOREM 7. For normal fuzzy grades, part (18) of the identity law, i.e.,
paul =1, pan0=0 (63)

is satisfied.

Proof. Obvious. |

Finally, we shall investigate some properties of normal convex fuzzy
grades and show that they form a distributive lattice under u and n.

TrEOREM 8. If py and pp are normal convex fuzzy grades in [, then
a U g, g Mpg, |py are also normal convex.

Proof. It is immediate from Theorem 3 and 6. ||
THEOREM 9. For normal convex fuzzy grades in ], the absorption laws, i.e.,

Pa M (g U pg) = pas  pg U (g 0 pp) = iy (64)
are satisfied.

Proof. We shall prove the absorption law u, 1 (uy 1 pp) = p, under
the assumption that p, and pj are normal convex fuzzy grades. The process
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of the proof of this absorption law is, however, similar to that of the proof
of Theorem 1 (see proof of (34)). Thus, the grade p(a) at a€ J in p, n
(144 1 pg) is given as in (40). Hence, using the convexity and the normality
of u, and pp, we have p(a) from (40) as follows.

pl@) =f(a) - Y g() + X f(w) - ¥ f(w)-g(a) - from (40)

uzG wga

= f(a) - Y g(8) + f(a) - g(a) *-* from the convexity of f
= f(a) Y g(z) = f(a) * 1 - from the normality of g
= f(a). (65)

Therefore we obtain p, n (u, U up) = py . The same holds for the absorp-
tion law py U (g 1 opp) = pa-

Note. In the proof of the absorption law, we did not use the normality
of f (or u,) and the convexity of g (or pp) in spite of the use of the convexity
of f and the normality of g. Thus, it is found that in general the absorption
laws hold as long as p, is convex and up is normal. More precisely, we
find that it is not necessary to assume the normality of g (or pp). That is
to say, if p, is convex, then the absorption laws can be shown to be satisfied
0 long as the maximal grade of f is less than or equal to the maximal grade
of g, i.e., > e, f(1) < Y5y g(2) from the fact that in (65) f(a) * 3, 2(2) = f(a)
if fla) <3, 6(2) for any a e J.

TueOREM 10. Normal convex fuzzy grades in | form a distributive lattice
under v and n, where the greatest element is 1/1 and the least element is 1/0.

Proof. 1t is obvious from Theorems 1, 4, 7, 8, and 9. It is noted that

for normal convex fuzzy grades, the order relation = defined in (45) is equal
to = in (46). |

From Theorem 10 the following theorem is derived.

TueorEM 11. Fuzzy sets of type 2 in a set X form a distributive lattice
under the operations U and N defined in (30) and (31), respectively, where
the grades characterizing these fuzzy sets of type 2 are normal convex fuzzy
grades in [ C [0, 1].

Thus, it is shown that fuzzy sets of type 2 whose grades are normal
convex fuzzy grades in [ are the special cases of L-fuzzy sets by Goguen

(1967).
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ExampLE 5. Let fuzzy grades in J = {0, 0.5, 1} be

i = 43/0 4 a,/0.5 + a5/l (66)
with @, , @, , a3 being in {0, 0.5, 1}. Then all fuzzy grades u,; (7 = 1, 2,..., 27)
are as in Table I, in which the fuzzy grades denoted by @ stands for normal

TABLE 1
Fuzzy Grades pu; = a,/0 + a,/0.5 + a3/l
(@: Normal Convex Fuzzy Grades)

Fuzzy grades a,  ay,  a Fuzzy grades @,  ay  a
i 0 0 0 @ 1 0.5 05
oo 05 0 0 0 1 0.5

@ 1 0 0 @ 05 1 0.5
e 0 05 0 1 1 0.5
K 05 05 0 0 0 1

1 05 0 Hao 0.5 0 1

@ 0 1 0 tay i 0 1

0.5 1 0 @ 0 05 1

@ 1 1 0 @ 05 05 1
B0 0 0 0.5 B 1 05 1
fiy 05 0 0.5 @ 0 1 1
fas 1 0 0.5 05 1 1
B 0 05 05 @ 1 1 1

pig 05 05 05
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convex fuzzy grades. These normal convex fuzzy grades constitute a
distributive lattice in Fig. 1.

The satisfaction or failure of each law for various kinds of fuzzy grades
under u, m, and 7] is summarized in Table II, where O stands for the
satisfaction of law, X stands for the failure, and A\ represents that a part
of identity laws is not satisfied, that is, u, U1 % 1 and g, n 0 # 0. The
properties of grades for ordinary fuzzy sets and binary grades (values of
characteristic functions) for ordinary sets are also listed in Table II. This
table also contains the properties of fuzzy grades under w and w, which
will be defined in Section 4.

Fic. 1. Distributive lattice by normal convex grades @ under v and n.

4, SoME ProperTIES OF Fuzzy (GRADES UNDER R AND LW

In this section we shall briefly investigate some algebraic properties
of fuzzy grades under the operations of join 1 and meet @ which are slightly
different from the operations of join u and meet n in (30), (31). The opera-
tions of w and @ are obtained by replacing min(A) by the algebraic product,
that is, by letting f(x;) g(w;) instead of f(u;) A g(w;) in (30) and (31).

Therefore, the operations of join 1 and meet wu for fuzzy grades are
defined by the following:
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TABLE II
Satisfaction or Failure of Laws for Various Kinds of
Fuzzy Grades under u, n, and
Idempotent Commutative Associative Absorption
laws laws laws laws

Fuzzy grades O @) O X
Normal fuzzy grades O O @) X
Convex fuzzy grades O O @) X
Normal convex fuzzy grades O O @) O
Grades (for ordinary O O O O
fuzzy sets)
Binary grades (for ordinary O O @) O
sets)
(Convex) fuzzy grades X X
under 1, M, and 7]
Normal (convex) fuzzy grades X X
under 1, A, and 7]

Distribu- Involu- Comple-
tive tion DeMorgan’s Identity ment
laws laws laws laws laws

Fuzzy grades X O O A X
Normal fuzzy grades X O O @) X
Convex fuzzy grades O O O A X
Normal convex fuzzy grades O O O @) X
Grades (for ordinary O O O O X
fuzzy sets)

Binary grades (for O O O O O
ordinary sets)

(Convex) fuzzy grades X O O X
under 11, [, and 7]

Normal (convex) fuzzy X X

grades under lu, [, and 7]
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Let fuzzy grades p, and pg be represented as p, = ., f(#)/u and
s = Sues (w)fw, then

(2 s} u (3 st

uet weJ /

= 2, f)g@)/uv w, (67)

u,weJ

pampp = 3 f(u)g@)unw, (68)

u,weJ

Batl pp

where f(u) g(w) stands for the algebraic product of f(x) and g(w).

THEOREM 12. Under the operations w1, n, and ~| in (67), (68), (32),
arbitrary fuzzy grades satisfy such laws as commutative laws, associative
laws, involution laws, and De Morgan’s laws. But normal convex fuzzy grades
(needless to say, any fuzzy grades, normal fuzzy grades, convex fuzzy grades)
do not satisfy idempotent laws, absorption laws, distributive laws, and complement
laws. A part of identity laws, i.e.,

patdl=py,  pym0=p,
are satisfied for any fuzzy grades. Another part of identity laws, i.e.,
pattl =1, pym0=0

can be satisfied for normal fuzzy grades and normal convex fuzzy grades only.

Proof. The proofs of satisfaction of laws can be executed similarly to
the proofs of Theorems 1 and 7. On the other hand, the failure of laws
can be illustrated by the following examples. ||

Exampii 6. It will be sufficient to show the examples of normal convex
fuzzy grades which do not satisfy the idempotent laws, absorption laws,
distributive laws, and complement laws.

Failure of idempotent laws. Let ] = {0.1,0.2,0.3,0.4} and let p, be a
normal convex fuzzy grade such that

wq = 0.3/0.1 + 1/0.2 + 0.8/0.3 + 0.4/0.4,
then from (67) and (68) we have

pa gy = 0.09/0.1 -+ 1/0.2 + 0.8/0.3 + 0.4/0.4 £ p,,
pa Py = 0.3/0.1 4 1/0.2 -+ 0.64/0.3 -+ 0.16/0.4 5 pu,, .
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Failure of absorption laws., Let p, and uy be

pq = 0.4/0.1 + 0.8/0.2 + 1/0.3 + 0.6/0.4,
pe = 0.3/0.1 4 1/0.2 4 0.7/0.3 4 0.5/0.4,
then

pa B (g 1 pp) = 0.4/0.1 -+ 0.8/0.2 + 1/0.3 + 0.36/0.4 # 1,
pa P (g 0 pp) = 0.16/0.1 + 0.8/0.2 + 1/0.3 -+ 0.6/0.4 = p, .

It is noted that py A (u, 0 pp) 7 py 1t (uy @ pp) in general.

Failure of distributive laws. If u,, pg, and p, are

pa = 0.7/0.1 + 1/0.2 + 0.9/0.3,
pe = 0.4/0.1 + 1/0.2 + 0.3/0.3,
pe = 0.8/0.1 + 1/0.2 + 0.1/0.3,
then
Ba P (pp © pe) = 0.56/0.1 4+ 1/0.2 + 0.9/0.3,
(pa ™ pp) t (g A pe) = 0.56/0.1 + 1/0.2 4- 0.81/0.3.
Similarly,
pa  (up 7 ope) = 0.7/0.1 4 1/0.2 + 0.27/0.3
(a1 pp) A (g 0 pe) = 0.56/0.1 + 1/0.2 + 0.27/0.3.

Failure of complement laws, If u, is

s = 0.7/0.1 -+ 1/0.2 + 0.4/0.3,
then
g = 0.7/0.9 4 1/0.8 + 0.4/0.7.
Thus,
pa s Ty = 0.7/0.9 -- 1/0.8 4 0.4/0.7 % 1/1 (=1),
pa P gy = 0.7/0.1 4 1/0.2 4 0.4/0.3 == 1/0 (=0).

339

Furthermore, we can easily show that if u, and ug are normal, then
Matdpg, py P pp, uy are normal. It is not known, however, whether
pa W ppand py M pg are convex or not under the assumption that p, and up
are convex. The authors have shown that the convexity of u, w pp and
tr4 M pp holds if | consists of three elements. They have not been able to
show the convexity in general cases. But we hope that the positive answer
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will be obtained in general cases. Thus we leave this problem as an open
problem.

Open problem. Are py 14 pp and py A pp convex fuzzy grades when
14 and pp are convex fuzzy grades?

In the sequel, we find that normal convex fuzzy grades (needless to say,
arbitrary fuzzy grades, convex fuzzy grades, normal fuzzy grades) under
the operations of 1 and @ do not, in general, constitute algebraic structures
such as a commutative semiring or a distributive lattice. In T'able II the
algebraic properties of fuzzy grades under w and m are listed.

5. CONCLUSION

In the foregoing discussion, we have concerned ourselves with elementary
operations for fuzzy grades. Various kinds of operations, however, will
be defined as an extension of the operations such as algebraic product and
algebraic sum for ordinary fuzzy sets. The algebraic properties of fuzzy
grades under such operations will be presented in subsequent papers.
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