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By extracting the basic properties common to the automata appeared in existing
literatures, we develop a general formulation of automata with “weights.”” We define
a pseudoautomaton and derive from it the well-known deterministic automaton,
nondeterministic automaton, probabilistic automaton, fuzzy automaton, and so on,
Moreover, several interesting automata such as /-semigroup automaton, lattice auto-
maton, dual lattice automaton, mixed boolean automaton, semiring automaton, ring
automaton and field automaton which have never appeared in any other paper before
are derived.

1. INTRODUCTION

Recently some interesting automata such as fuzzy automata [1-3, 7-11], max-
product automata [4], integer-valued generalized automata [16, 18] have been
formulated as a generalization of well-known deterministic automata, nondeterministic
automata, and probabilistic automata. The common property with these automata
is that they have the “weights” of state transitions as well as initial and final distribu-
tions. Clearly probabilistic automata can be considered as sorts of these automata
with “weights.” For example, fuzzy automata are the automata with weights where
the values in the interval [0, 1] are adopted as the weights of state transition and
the operations max and min are introduced. In addition, max-product automata
can be formulated from fuzzy automata by replacing min by ordinary product.
And by using 4 and X as the operations and the probabilities as the weights, proba-
bilistic automata can be defined. Moreover, integer-valued generalized automata
have integers as weights and + and X as operations.

In this paper we develop a general formulation of automata with weights by
extracting the basic properties common to the existing automata and by incorporating
the appropriate algebra systems with automata systems and by performing the opera-
tions of the algebra systems to the state transition functions and initial and final
distribution functions of the pseudoautomata defined later.

Now we shall briefly review the concept of L-fuzzy relations by Goguen [5] as
a preparation. The concept of L-fuzzy relations will be found to be an important
concept in defining various kinds of automata with weights in Section 3.
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2. L-Fuzzy RELATIONS

After Zadeh [6] originated the concept of fuzzy relations as an extension of that
of relations in ordinary set theory, Goguen [5] has formulated L-fuzzy relations as
a generalization of fuzzy relations. The concept of (L-)fuzzy relations enables us
to define fuzzy automata, l-semigroup automata, lattice automata, dual lattice
automata, max-product automata, and so on. Moreover, it will be found that (L-)fuzzy
relations come to be an important notion in formulating the other kinds of automata
with weights such as semiring automata, ring automata, integer-valued generalized
automata, and field automata.

DerINITION 1. An L-fuzzy relation R in the product space X X X = {(x, , x,) |
%y, %, € X} is an L-fuzzy set in X X X characterized by a membership function

Mg such as
pri X X X =L, (N

where L is called a membership space and is assumed to be a partially ordered set or,
more particularly, a lattice.

When L is the unit interval [0, 1], R is a fuzzy relation originated by Zadeh [6].
Moreover, when L = {0, 1}, R is an ordinary relation and its membership function
pg reduces to the conventional characteristic function of a nonfuzzy relation.

In this paper the structure of the membership space L is assumed to be a complete
lattice ordered semigroup® and a complete distributive lattice on account of the
concept of composition of L-fuzzy relations denoted below.

DerintrioN 2. Let Ry and R, be two L-fuzzy relations in X X X, then by the
composition (or product) of R; and R, is meant an L-fuzzy relation in X x X which
is denoted by R, R, and is defined as follows.

(I) If L is a complete lattice ordered semigroup (or /-semigroup) (L, V, %), then

Py 2) =\ [ur, (% 3) * pry(3, 2)], 2

where V and x are the operations of lub and semigroup in L, respectively.

1 A complete lattice which is a semigroup with identity under * and also satisfies the following
distributive law is a complete lattice ordered semigroup (l-semigroup for short) and is denoted as
L = (L, V, x), where V is an operation lub in L. The distributive law is as follows, For each
X, ¥, %;,y;inL,

x*(vyi): V(x*yi) and (\_/xi)*y= V(xi*y)~
Still more, if semigroup operation * is replaced by A(= glb) inL = (L, V, %), then I becomes
a complete distributive lattice.
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(II) If L is a complete distributive lattice (L, V, A), then
Bryry(%, B) = V [I-"Rl(x’ ¥) A pr(: )], (3)
v

where the operations V and A are lub and glb in L, respectively.

By the way, as the operations V and A are dual in the distributive lattice, the dif-
ferent composition of L-fuzzy relations can be defined by replacing V with A as
follows.

pryry(% 2) = N (1R, (%: 3) V pry (s 2)]- 4)

If L-fuzzy relation R is a fuzzy relation by Zadeh, R is characterized by a membership

function such as
ugi X X X — [0, 1]

Then two kinds of compositions of fuzzy relations R; and R, are defined as special
case of (3) and (4), i.e.,

Pryry(%, 7) = sup minfug (¥, ¥), pry(5s 2)]s )
I"RlRa(x, %) = inf :l;nax[l“‘kl(x’ ¥ )U*Rg(y’ z)]- (6)

‘We shall next denote the fundamental properties concerning with L-fuzzy relations.
The operation of composition of (L-)fuzzy relations has the associative property,
that is, for (L-)fuzzy relations R, R,, and Ry, we have

(RR,)R; = Ry(RyRy)- (™
This can be shown by the following. Let ug , pg,, and pp be the membership
functions which characterize (L-)fuzzy relations R;, R,, and Ry, respectively,
then, say, in the case of (2),
I‘(Rle)Ra(xv w) = V [lelkg(x’ R) * Mks(z y )]
= V [z V [/"’Rl(x’ y) * [J'Rg(y9 .2‘)]$ * Pﬂg(z) w)]
z v
= V [tr(%: ) * pry(¥; 2) * pgy(z, w)] -+ (From distributive law)
Y2

=V [kr,@® 3) * {{pr (> 3) * pry(z )]}

= V [1ery(%, ¥) * Brer( Y W)} = V'RI(R,R,)(xa w).
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It should be noted that the distributive law plays an important role in proving the
associative property of (L-)fuzzy relations. Therefore, in general, let R, R, ,..., R,
be (L-)fuzzy relations, then the composition RyR, - R, , say, of the case of (2)
is defined by the membership function g z,...r, as

.“’Rle---Ra(xl s xn+1) = V [.“‘Rl(xl ’ xz) * f"Rg(xz ’ xs) ook l”R,,(xn ’ xn+1)]' (8)

The same holds for (3)-(6).
If there are two elements 0 and 7 in [-semigroup L = (L, V, %) such that, for
all x in L,

xv0=ux, xx0=0xx=0,

©

Ivx=1, xxl] =I*xx =x,

then they are called a zero and an identity of L, respectively. For example, let L
be ([0, 1], max, ‘) and the operation - be ordinary product, then L is an I-semigroup
with zero 0 and identity 1. Moreover, let the cartesian product of [0, 1] be represented
as [0, 1]? and the operations max and - be defined as

max{(a, b), (¢, d)} = (max{a, c}, max{b, d}),
(a,0)(¢e,d) =(a-¢,b-d),
for each (a, b), (¢, d) in [0, 1]2. Then L = ([0, 1]%, max, '} is an l-semigroup with
zero (0, 0) and identity (1, 1).

For the l-semigroup L with zero 0 and identity I, let the identity relation E be
defined by

_ I x =1,
prles) = [ T2 (10)
then we have
ER = RE = R, (11)

for each L-fuzzy relation R.

Note. As is easily shown, every L-fuzzy relation R over X is representable by
matrix if X is a finite set. Let X = {x, , %5 ,..., %,,}, then R is represented by n X n
matrix as follows.

R = [pg(x;, 5], ,7=12..,n
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3. Various KINDS OF AUTOMATA WITH WEIGHTS

In this section a pseudoautomaton is defined and from it we derive various kinds
of automata with weights which have or have not appeared in existing papers.

DerFINITION 3. A pseudoautomaton is a system? such as

A =(S, 2 W,pn,mmn), (12)
where
(1) S is a finite set of states;
(2) 2'is a finite set of input symbols;
(3) W is a weighting space;
(4) p is a weighting function such as
pSxXZxS—>WwW, (13)
and is called a state transition function. The value u(s, a, s') in W represents
the weight of transition from state s to state s’ when the input symbol is a;

(5) 7 is an initial distribution function and is defined as

7 S~ W; (14)
(6) = is a final distribution function and is defined as

7S —> W. (15)

"The set of all finite strings over 2 is denoted by X*. The null string is denoted
by € and is included in Z*, with property xe = x = ex for every string & in 2%,

DEFINITION 4. An automaton A* is a system
A* = (S, Z, W, u*, =, 1), (16)

? In this paper the terms of times and outputs are omitted for simplicity. If we adopt the term
of times, the state transition function g, the initial distribution function 7, and the final distribu-
tion function 7 are given as

wSXIXSXT—W,
mS X T —W,
nSXT—>W,
where T is a subset of real line.
Let 4 be a set of output symbols, then output function 8 is defined as

S XIEXAXT>W.
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where S, Z, W, =, and 7 are the same as that given above. p* is the same as K given
above with X* replacing Z, i.e.,

S X Z* X S— W, (17

Next we shall derive various kinds of automata with weights by introducing the
algebra systems to the weighting space W of the pseudoautomaton and by giving
the extension rules for obtaining u* from u.

3.1. L-Semigroup Automaton

(3.1a).  As a weighting space W, complete lattice ordered semigroup (f-semigroup
for short) L = (L, V, *) with identity I and zero 0 is adopted, where the operations
V and x are lub and semigroup operation in L, respectively. Then the state transition
function g, the initial distribution function =, and the final distribution function 7
are given by replacing W in (13), (14), and (15) by L as follows.

prS X2 X S—~L, (18)
m S -—>1L, (19)
7S —L. (20)

(3.1b).  Using the concept of composition of L-fuzzy relations (2), the state tran-
sition function u* for input strings in Z* is obtained recursively as follows.
Fore,xe2* andac X,

) I if s=¢,
e =l ¢ oy 21)
p¥(s, xa, s')y = '\ [p*(s, x, s") * u(s", a, 5], (22)

s"eS
where s, 5" € S, and I and 0 are identity and zero of L, respectively.

Remark 1. Suppose that the automaton starts from a certain initial state, say,
So» the initial distribution function = is concentrated at s, , i.e.,

VS if s=s,,
() = 30 w0 sty (23)
Remark 2. Let F(C S) be a set of final states, then the final distribution function

7 is defined as
I if seF,
W=l i 1er (24)

Hence, the definition of 7 given by (20) is a generalization of that of 5 by (24).



AUTOMATA WITH WEIGHTS 225

Remark 3. Given the expression (22) and the initial distribution # and the final
distribution 7, the weight, written by w(x), of input string x by the automaton is
defined by

wx) =\ [7(s) x u¥(s, %, 5')  7(s")], (25)

8,8'eS§
where x € 2%,

Remark 4. As there exists an order relation > in l-semigroup L = (L, V, %),
the language L(4, A) accepted by l-semigroup automaton A with parameter A can
be defined by

L(A4,)) = {xe 2% | w(x) = A}, (26)

where A is called a threshold (or cut point) and is included in the weighting space L.

3.2. Max-Product Automaton [3, 4]

(3.22). Let the weighting space W be L’ = ([0, 1], max, *) in l-semigroup
automaton of 3.1, where the operation - represents ordinary product. Then, obviously,
L' is an l-semigroup with identity 1 and zero 0. p, 7, and 7 are obtained by replacing
L in (18)~20) by [0, 1], i.e.,

pr S X2 xS—~|0,1], 7
m: S — [0, 1], (28)
7S — [0, 1]. (29)

(3.2b). p* and w are obtained by replacing V by max and * by - in (21), (22),
and (25).

7
1 s =,

w*(s, €, s') — 0 - s oS, (30)
p*(s, xa, s') = ?}gg[/‘*(s» x,§") - pls”, a, s (31)
@) = maxfr(s) W 5, ) - 7(s)) (32)

Remark. Clearly max-product automaton is considered as special case of I-semi-
group automaton of 3.1 and is also shown to be a special case of semiring automaton
of 3.14 defined soon.

3.3. Lattice Automaton

(3.3a). The complete distributive lattice L = (L, V, A) is adopted as the weighting
space, where V and A are the operations lub and glb in L, respectively. u, 7, and 7
are given from (13)-(15) as

p: S X2 x S—~L, (33)
m S->1L, (34)
7S —L. (35)
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(3.3b). u* and w are obtained as follows by using the concept of composition
of L-fuzzy relations (3).

p.*(s, € s’) = gé : : :::: (36)
p*(s, xa, s’) = ys (s, , s") A p(s”, a, 5], (37
w(x) = \/S [7(s) A w¥(s, %, 8") A 7(s")], (38)

~ where I and 0 are maximal and minimal elements of the complete distributive lattice L,
respectively. It is noted that the expressions (37) and (38) are obtained by replacing
* by A from (22) and (25).

Remark. As the complete distributive lattice is a special case of the complete
lattice ordered semigroup, lattice automaton is considered as a special case of l-semi-

group automaton of 3.1.
By the way, the operations V and A are dual in a complete distributive lattice

L = (L, V, N), so the dual automaton of lattice automaton can be formulated by
the following.

3.4. Dual Lattice Automaton

(3.4a). This is the same as (3.3a).
(3.4b). Using the concept of composition of L-fuzzy relations (4), u* and w
are given as follows.

Whes)={1 T (39)
p¥(s, xa, s') = /\s [*(s, %, 8") v pls”, @, )], (40)
W) = A BV e 6) VO] (41)

Remark. 1t is noted that, given a certain initial state s, and a final state set F,
7 and 7 of lattice automaton of 3.3 are given as follows in the same manner as (23)
and (24).

§ =5,

7'r(s)=§(I)::: e 42)

OSSP @)
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However, 7 and % of dual lattice automaton of 3.4 are

ORI (44)
W=l e 9)

3.5. (Pessimistic) Fuzzy Automaton [1-3, 7-11]

(3.5a). As the weighting space, | = ([0, 1], max, min) is adopted. Needless to
say, J is a complete distributive lattice under the operations max and min. g, ,
and 7 are as follows.

p S x Zx S—[0,1], (46)
m S —[0,1], (47)
7 S — [0, 1]. (48)

(3.5b). u* and w are given by using the concept of composition of fuzzy relations
(5), i.e.,

1 s=¢

* N = ’
wees) =l 120 “9)
p*(s, xa, s) = maf,ergin[ﬂ*(s» %, s"), p(s"s @, §)], (50)
w(x) = m?)ig)gin[vr(s), p¥(s, %, 87), n(s")]. (51)

Remark. As J = ([0, 1], max, min) is a complete distributive lattice, fuzzy
automaton can be considered as special case of lattice automaton of 3.3. Therefore
p* and w of (49)—(51) are obtained from (36)—(38) by replacing V by max, A by min,
I by 1, and O by 0.

3.6. Optimistic Fuzzy Automaton [1-3, 9]
(3.6a). 'This is the same as (3.5a).

(3.6b). p* and w are given by using the composition of fuzzy relations (6), i.e.,

, 0-- s=¢,
pX(s, e 8) = . Y (52)
(s, xa, s’y = mi?” é'gax[pc*(s, %, §"), u(s”, a, N1, (53)

w(x) = min max(a(s), w*(s, %, ), 7)) ¢4
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Remark 1. Optimistic fuzzy automaton is the special case of dual lattice automaton
of 3.4.

Remark 2. Given an initial state s, and a final state set F, = and 7 of fuzzy au-
tomaton of 3.5 are obtained from (42) and (43) by replacing I by 1 and 0 by 0, but
7 and % of optimistic fuzzy automaton are obtained from (44) and (45) [2].

3.7. Mixed Fuzzy Automaton [3]
(3.7a). This is the same as (3.5a).

(3.7b). p* and w are defined by using the concept of convex combination of
fuzzy sets [6], i.e.,

I"‘*(S’ Xy S’) = a":l’(sv X, sl) + b}"gl’(s; Xy 5’), (55)

w(x) = awpp(x) + bwor(x), (56)

where pfp and pfy are the state transition functions defined by (pessimistic) fuzzy

automaton of 3.5 and optimistic fuzzy automaton of 3.6, respectively. This is the
same for wpp and wop . And a, b (=20) are real numbers such that @ -+ b = 1.

3.8. Composite Fuzzy Automata [1, 8]

(3.8a). This is the same as (3.5).

(3.8b). p* is obtained by operating between p¥, and p}, with probability p.
This is the same for w.

3.9. Nondeterministic Automaton [12]

(3.92). J' = ({0, 1}, max, min) is adopted as the weighting space. Clearly J'
forms a distributive lattice (more precisely, a boolean lattice). , =, and 7 are given
as follows.

p: S x 2 x §—{0, 1}, (57)
S —{0, 1}, (58)
7: 8 — {0, 1}. (59)

(3.9b). This is the same as (3.5b).

Remark. Nondeterministic automaton is the special case of fuzzy automaton
of 3.5 (or /~semigroup automaton of 3.1).
3.10. Deterministic Automaton [12]

(3.102). This is the same as (3.9a) plus the additional constraints that there
exists only one s’ € S'such that u(s, g, s") = 1 for each s € Sand a € Zand p(s, @, s") = 0
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for other s” (# '), and that there exists only one s’ € S (that is, " is an initial state)
such that #(s") = 1 and #(s") = 0 for other s" (5 ¢'). As for 7, let F be a set of final
states, then

1 - seF,
") =l s¢F.

(3.10b). This is the same as (3.9b).

Remark. Clearly, deterministic automaton is the special case of nondeterministic
automaton of 3.9 and also of probabilistic automaton of 3.18 defined later.
3.11. Boolean Automaton

(3.11a). As the weighting space, a complete boolean lattice B = (B, V, A) is
adopted, where the operations V and A are lub and glb in B. Clearly, the boolean
lattice is a special case of the distributive lattice. Then p, 7, and 7 are as follows.

p:S x 2 x S— B, (60)
xS —> B, ©1)
S — B. (62)

(3.11b). 'This is the same as (3.3b).

Remark. Boolean automaton and dual boolean automaton defined next are the
special cases of lattice automaton of 3.3 and dual lattice automaton of 3.4, respectively.

3.12. Dual Boolean Automaton

(3.122). This is the same as (3.11a).
(3.12b). This is the same as (3.4b).

3.13. Mixed Boolean Automaton

(3.13a). This is the same as (3.11a).
(3.13b). Using the concept of convex combination of B-fuzzy sets [13], u* and

2 are defined as follows.
p* = (A pg®) v (& A pba), (63)
w = (a A wg) vV (& A wpp), (64)
where pp* and pfk, are the state transition functions which are defined in boolean

automaton of 3.11 and dual boolean automaton of 3.12, respectively. «, G € B and &
is the complement of a.
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3.14. Semiring Automaton

(3.14a). 'The weighting space is a semiring R = (R, 4, X) with unity 1 and
zero 0.3 u, 7, and 5 are given as

prSxXXZxS—R, (65)
m: S — R, (66)
n:S— R (67)
(3.14b). p* and w are given as follows.
, 1 s =19,
pH(s, xa, ') = Y, [n¥(s, %, 5") X pls”, a, 5], (69)
8"es

w(x) = Y [7(s) X p¥(s, %, 57) X 7(s)]- (70)

s.8’e§

Remark. As the special case of semiring automaton, there exist [semigroup
automaton of 3.1, max-product automaton of 3.2, lattice automaton of 3.3, fuzzy
automaton of 3.5, nondeterministic automaton of 3.9, boolean automaton of 3.12,
and so on.

3.15. Weighted Automaton [14, 19]

(3.152). The weighting space is R = ([0, o), -+, -), where [0, c0) is a set of
nonnegative numbers and the operations + and - are ordinary addition and product,
respectively. Obviously, R = ([0, o0), -}-, *) is the semiring with unity and zero.
Then p, «, and 5 are defined from (65)—(67) by replacing R by [0, c0) as follows.

u: S X 2 xS [0, o), (71)
m: S — [0, o0), (72)
n: 8§ — [0, o). (73)

3 The set R with the operations of addition - and multiplication X is called a semiring if
the following three conditions are satisfied. (1) 4 is associative and commutative; (2) X is
associative; (3) X distributes over +, i.e.,

axXxb+e)=axbtaXe, bG+e)Xa=bxa+t+cXa,

for all a, b, ¢ in R. The semiring R is called a semiring with unity 1 and zero 0 if 1 is identity
under X and 0 is identity under + in R. For example, let R be ([0, »), +, ) with ordinary
addition + and ordinary product -, then [0, ) (= set of nonnegative numbers) is a semiring
with unity 1 and zero 0. Similarly, the set of natural numbers containing 0 is also a semiring
with unity and zero under + and . And R = ([0, 1], max, *) is a semiring with unity and zero.
Note that this R is also an /-semigroup. In general, it is found that [-semigroup and complete
distributive lattice are the special cases of the semiring with unity and zero.
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(3-15b). p* and w are defined by letting 4 be ordinary addition and replacing X
by - (= ordinary product) in (68)~(70).

s=¢,

e =g 1D (74)

p¥(s, xa, s') = Y p¥s x,8") c pls’, @, 87), (75)
8"es

w(#) = T ) wHsw ) () (76)

Remark, Weighted automaton is found to be a special case of semiring automaton
of 3.14.

3.16. Max-Weighted Automaton [14]

(3.16a). Let the weighting space be R = ([0, c0), max, -) with ordinary product -.
Clearly R is a semiring with unity and zero. y, 7, and 7 are given in the same way

as (71)-(73).
(3.16b). p* and w are obtained as follows.

n_ Ll s=4,
I"'*(S! G,S) - 0-- $ S!, (77)
p*(s, xa, s') = ?3?3;‘["*(3’ %, s") * (s, @ )] (78)
w(®) = max[m(s) - p*(s, %, 5') * 7(s)]- (79)

Remark 1. Max-weighted automaton is the special case of semiring automaton
of 3.14.

Remark 2. Max-product automaton of 3.2 can be reduced from max-weighted
automaton by replacing [0, o) by [0, 1].
3.17. Natural Numbered Automaton

(3.172). The weighting space is N = (N, +, ), where N is a set of natural
numbers which contains 0.

S x X xS—N, (80)
w: S — N, (81)
7: S — N. (82)

(3.17b). 'This is the same as (3.15b).
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Remark 1. Natural numbered automaton is the special case of weighted automaton
of 3.15.

Remark 2. Max-natural numbered automaton can be easily defined in a same
manner as max-weighted automaton of 3.16.

3.18. Probabilistic Automaton [12, 15]
(3.18a). Let the weighting space be ([0, 1], +, °), then p, 7, and 7 are

;L:SXEXS—»[O, 1], (83)
m 8 — [0, 1], (84)
n: S — [0, 1], (85)

and, in addition, the following constraint of u, 7, and n are assumed. For each se S
andac 2,

Y s, a8) =1, Y sy = 1. (86)

s’es s'eS
As for », let F be a final state set, then

1 eF,
o=l @
(3.18b). This is the same as (3.15b).

Remark. There exists another definition of » different from (87) [16]. That is,
in the same way as p and 7 of (86), we have

2 () = 1. (88)

se§

3.19. Generalized Probabilistic Automaton [16, 17]

(3.19a). 'This is the same as (3.18a) without the assumption that the range of 7
is not the unit interval [0, 1] but a set of real numbers (— oo, ), i.e.,

n: S — (—00, ©). ' (89)
(3.19b). This is the same as (3.18b).

Remark. 'The language accepted by generalized probabilistic automaton is defined
by
L(4,)) = {xeZ*|wx) = A}, (90)

where A is in (— o0, o). As for probabilistic automaton of 3.18, A is in [0, 1].
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3.20. Rational Probabilistic Automaton [18]

(3.20a2). 'This is the same as (3.18a) plus the assumption that the values uf(s, a, s)
and 7(s) are rational numbers in [0, 1].

(3.20b). This is the same as (3.18b).

3.21. Ring Automaton

(3-21a). 'The weighting space is a ring with identity? R = (R, +, X). p, m, and
7 are

pSxZXS—R, 91
m S —R, (92)
7S —R. 93)

(3.21b). 'This is the same as (3.14b).

Remark. Ring automaton is the special case of semiring automaton of 3.14.
It is noted that weighted automaton of 3.15 and max-weighted automaton of 3.16
which are the special cases of semiring automaton of 3.14 are not the special case
of ring automaton,

3.22. Integer-Valued Generalized Automaton [16, 18]

(3.22a). The weighting space is Z = (Z, +, *), where Z is a set of integers and
the operations + and - are ordinary addition and product, respectively. Clearly
Z is a ring with identity. p, 7, and 5 are

p:S XXX S—>2Z, (94)
m S Z, (95)
i S — 7. (96)

(3.22b). 'This is the same as (3.15b).

Remark. Integer-valued generalized automaton is a special case of ring automaton
of 3.21.

4 The set R with the operations of addition + and multiplication X is called a ring if (1) R is
an Abelian group under -+, (2) X is associative, (3) X distributive over +, i.e.,

a><(b+c)=t;1><b+a><c, b+c)Xa=bxa+tcXa

for all @, b, ¢ in R. In addition, if R has an identity 1 under X, then R is called a ring with identity.
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3.23. Field Automaton
(3.23a). Let the weighting space be a field F = (F, 4, X), then p, =, and % are

p:S X2 x S—F, 97
@t S —F, (98)
7. S—F. (99)

(3.23b). This is the same as (3.21b).

Remark. Clearly, field automaton is a special case of ring automaton of 3.21.
Integer-valued generalized automaton of 3.22 which is a special case of ring automaton
is not a special case of field automaton,

3.24. (Real-Valued) Generalized Automaton [16, 18, 19]

(3.24a). The weighting space is F = ((—o0, o), +, *), where (—o0, c0) is a
set of real numbers, and +, - are ordinary addition and product. u, m, and 7 are

pr S X 2 X 8—> (—o0, ), (100)
m S — (—oc0, ©), (101)
7t S — (=00, 00). (102)

(3.24b), 'This is the same as (3.15b).

Remark. Real-valued generalized automaton is a special case of field automaton
of 3.23.
3.25. Rational Automaton

(3.25a). The weighting space is Q = (Q, +, -), where Q is a set of rational
numbers, and -, - are ordinary addition and product. p, 7, and 75 are

pSxEx S>>0, (103)
m S —Q, (104)
7 S—0. (105)

(3.25b). 'This is the same as (3.15b).

Remark. Rational automaton is the special case of real-valued generalized au-
tomaton of 3.24 and also of field automaton of 3.23.

® ‘The set I with addition - and multiplication X is called a field if (1) F is a ring, and (2)
F — {0} is a group under x, where 0 is a zero element of F.
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4. CONCLUSION

We have derived various kinds of automata with weights. Some of these automata
are scanty of physical images. But, for example, from the fact that the classes of
languages defined by rational probabilistic automata of 3.20 and integer-valued
generalized automata of 3.22 are equal, various problems concerning with rational
probabilistic automata can be solved by investigating the properties of integer-valued
generalized automata [16, 18]. Therefore, the automata with weights will play an
important role in investigating the properties of well-known automata such as deter~
ministic automata and probabilistic automata. Moreover, they will come to be useful
models of, say, learning systems, gamings, and pattern recognitions as in the case
of fuzzy automata [1, 7, 8].

By the way, as the special case of field automaton of 3.23, we can define a complex
numbered automaton, since the set of complex numbers forms a field. We cannot,
however, define a language accepted by this automaton in the same way as (26)
because of the fact that there does not exist an order relation > in the set of complex
numbers. But, using the concept of mapping of the set of complex numbers into
a certain algebra system with ordering, say, by transforming the complex number 2
to the absolute value | z |, we can define a language by complex numbered automaton
A as L(A4,)) = {xe2*| | w(x)| > | A|}. If not permitted to use the concept of
mappings, we would have to adopt a ring and a field with orderings [20, 21] as the
weighting space.

Recently, probabilistic pushdown automata, probabilistic Turing machines, fuzzy
pushdown automata, and fuzzy Turing machines have been reported in many papers
as extensions of probabilistic automata and fuzzy automata. So we hope that pushdown
automata, linear bounded automata, and Turing machines with “weights” will be
formulated as extensions of automata with weights.
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