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ABSTRACT

An L-fuzzy grammar is defined by assigning the element of lattice to the rewriting rules
of a formal grammar. According to the kind of lattice, say, distributive lattice, lattice-
ordered group, and lattice-ordered monoid, two type of L-fuzzy grammars are defined. It is
shown that some context-sensitive languages can be generated by type 3 *-L-fuzzy grammars
with cut points. It is also shown that for type 2 L-fuzzy grammars, Chomsky and Greibach
normal form can be constructed as an extension of corresponding notion in the theory of
formal grammars.

1. INTRODUCTION

Recently, in order to reduce the gap between natural languages and formal
languages, stochastic grammars and fuzzy grammars have been formulated by
introducing the concept of randomness and fuzziness into the structure of the
formal grammars [3-5, 7, 8]. In addition, several interesting grammars with
weights are also defined by corresponding the element of the appropriate alge-
braic system to each rewriting rule of grammars [6] .

Now, incorrectness and ambiguity, which natural languages such as English
have syntactically and semantically, may be reduced to impose consistency
among means of words in the sentence, valuation of means of the word, and so
forth on formal languages. Therefore, if the suitable characteristic parameters
which describe the property of grammars or languages may be given, then the
grammar with such characteristic parameters may be considered as a modet for
natural languages.

In this paper, we define L-fuzzy grammars by introducing the concept of
L-fuzzyy sets [1] into the structure of formal grammars, that is, L-fuzzy gram-
mars are defined by assigning the element of lattice to the rewriting rules of
formal grammars. Two types of L-fuzzy grammars will be considered. One is
the A-L-fuzzy grammar (A-Ifg for short) whose membership space consists of a
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distributive lattice or a Boolean lattice. A fuzzy grammar is a special case of the
A-fg. The other is the *-L-fuzzy grammar (*-Ifg for short), whose membership
space consists of a lattice-ordered group or a lattice-ordered monoid.

Some basic results concerning the families of languages generated by the
A-Ifg and the *-Ifg are given in Sec. 3. In Sec. 4, it is shown that the so called
Chomsky and Greibach normal form for a type 2 Adfg and a type 2 *-Ifg can be
constructed as the extension of the corresponding notion in the theory of formal
grammars.

2. BASIC DEFINITIONS

We shall review L-fuzzy sets [1] for the purpose of defining L-fuzzy
grammars later.

L-FUZZY SETS
An L-fuzzy set A in a space X = {x} is a function such that
A:X—L, )

where [ is called a membership space which is a partially ordered set or, more
precisely, lattice-ordered semigroup or lattice [11], and the value A (x) in L
represents the “grade of membership” of X in 4. When L is the unit interval
[0,1], A is the fuzzy set originated by Zadeh [2].

PRODUCT OF L-FUZZY RELATIONS

An L-fuzzy relation R is a function from product space X X Y = {(x,) |
XxXEX,yEY}tol,ie.,

R:XXY—L. @)

If R, and R, are two L-fuzzy relations in X X X, then the product of Ry and
R, is defined by an L-fuzzy relation denoted as R{R, and is written as follows:

R{Ry(x,2) =V [Ri(x,y) O R2(y,2)], 3)

where V is an operation of supremum, © is an operation of infimum when L is a
distributive lattice of a Boolean lattice, or an operation of group or monoid
when L is a lattice-ordered group or a lattice-ordered monoid, respectively. In
general, if L is distributive, the product of R, - - *, R of L-fuzzy relation R in

X X X is defined as follows:

R R(xy)=R"(x,0)=_ V

X p -

[R(x,x1) ©R(x,,x2)
1

0+ 0R(xXp-1, ). (4)
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L-FUZZY GRAMMARS
An L-fuzzy grammar (Ifg for short) is a system such that
G=(VN: VT,PHS:J:M:L): (5)

where V) is the set of nonterminal, Vy is a set of terminal, S is an initial symbol,
J is a set of labels of rules, and P is a finite set of productions such as

() u——vu(r), ©®

in which r €J, u = v is an ordinary rewriting rule, and u is an L-fuzzy set from J
toL,ie.,u:J—> L. L consists of a distributive lattice, a Boolean lattice, a
lattice-ordered group of a lattice-ordered monoid. The value u(r)in L is called
the grade of the application of the rule ». Concerning with the L-fuzzy relation
Rin (Vy U Vp)* X (VU Vr)*, the value of R is defined as follows:

uHif(Du—>vu(r)EP,
~oif (Hu — v u(r) &P, @)

where aup and avf are in (Vy U Vp)*. If L is a complete lattice,—oo may be
assumed as an infinum of L, i.e., inf L = -eo. In parallel with the standard classi-
fication of formal grammars [9], four principal types of Ifg may be distinguished
astype 0, 1, 2, and 3 Ifg. Furthermore, according to differences among lattices,
two types of Ifg may be considered. That is, A-Ifg, whose membership space
consists of a distributive lattice or a Boolean lattice, and *-Ifg, whose member-
ship space consists of a lattice-ordered group or a lattice-ordered monoid, may
be considered.

R(oup, avp) = {

L-FUZZY LANGUAGES

An L-fuzzy languages, L (G), is a set of ordered pairs,

L(G)={(x,uc(x)}, x € V7, ®
where u(x) is the grade of membership of x generated by Ifg G and is given by
uc(x)=R*(S,x), where R*=UR, i 2 1. 9)
When the derivation chains from S to x are expressed as
S M(r“): oy "(rn): e M)a,-m =x, (10)
ti1 ria Yim

the value of g (x) is also given by
() =V [u(rin) O p(rin) © - -~ 0 u(rim)], (11)

where the supremum V is taken over all derivation chains from S to x, O is an
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operation of infinum when an L-fuzzy grammar is a A-lfg, or an operation of
group or monoid when an L-fuzzy grammar is a *-Ifg.

The language, L (G, A), which is generated by an Ifg G with cut point A(EL)
is defined as follows:

L(G,N= {x €V} ug(x) 22} (12)

3. CLASS OF L-FUZZY LANGUAGES
3.1. THE CLASS OF LANGUAGES GENERATED BY A-fg

In this section, to discuss the class of L-fuzzy languages, let us consider the
language, L (G, A), by an A-ifg G with cut point A(EL).

In general, we may assume that an L-fuzzy relation R assigns a sublattice of
membership space L to an L-fuzzy grammar. In Lemma 1, we investigate the .
property of sublattices. Using this property, it is shown that the class of the
languages generated by the type 3 A-Ifg is a regular set.

Theorem 2 shows that the class of languages generated by type 2 A-Ifg with
cut point properly contains the class of context-free languages.

In Theorem 3, it is shown that type 1 A-Ifg is recursive.

LEMMA 1. In the distributive lattice whose number of elements is infinite,
the number of elements of the sublattice which is generated from arbitrary finite
elements of lattice is finite.

Proof, In lattice, an arbitrary finite subset of the elements has its supremum
and infinum. Also the arbitrary lattice polynominal of distributive lattice can
be expressed such that

P{x1:x2a' ) ',xm} =V {xil /\xi2 /\. : '/\xik}’xl‘je{xl:xZ,' " '$xm}a
or
P{xi,x2, " xm}=N{xy Vxia Voo - Vixg b x € {x1, %2, xm b (13)

Therefore, the number of elements of the sublattice which is generated from
arbitrary finite elements of L is equal to the number of lattice polynominals.
From the above fact, it can be seen that the number of elements of the sublat-
tice is finite. And the number of elements of the sublattice Y is obtained as
follows:

S

=1 j=1 ]

liA

lY | (14)

where Y is the sublattice generated from the set of arbitrary elements X = {x,,
X2, **,Xp }, and an operation ( ) is an operation of combination.
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THEOREM 2. The class of languages generated by type 3 \-Ifg with cut point
N is the class of regular sets.

Proof. Let G=(Vy, Vg, P,S,J,u, L)be the type 3 A-lfg with Vy = {5, 4;,
Ay, Am}, |J1=n(n 2 m+ 1). Then the equivalence relation = of x, y (€

V) is defined as follows: For any 4, € Vyy U {e} (e is a null symbol), define
x =y €=>R(S,x4:) = R'(S, yA). (15)
Then
R*(S,xz4)= Y [R*(S, xA4;) R*(xA;,xz4)] ,

=V [R*(S,x4;) R"(4;,24)],
= Y [R*(S, yA;) R*(4;, z4)],
=V [R*(S,y4) R*(y4;, yzA)],

=R*(S, yzA). (16)

Therefore the equivalence relation = is a right invariant equivalence relation.
Here let us define the m + 2 array vector consisted of the elements of the mem-
bership space L as follows:

(RY(S,x8), R*(S,%A4,), R'(S,x42), * * ,R"(S,xA,n), R'(S, X))

=(V0a Vi, Va," " "% Vm’pm+1)a (17)

where x € V¥, and §,4,,4,," " *, Am € Vi, then the number of equivalent
classes by the relation = is less than the number of the m + 2 array vectors o,
Yy, V2, " UmsVmsr). And from Lemma 1, it is evident that the number of
vectors is finite. Consequently, the language generated by the type 3 Nlfg G is
the union of the equivalent class of a right invariant equivalence relation = of
finite index. We conclude that the class of the languages generated by the type 3
A-lfg’s is the class of regular sets.

THEOREM 3. The class of languages generated by the type 2 N-Ifg’s with cut
point properly contains the class of context-free languages.

Proof. In the first place, let us show that the context-sensitive language is
generated by the type 2 A-lfg with cut point. Consider the type 2 A-Ifg with
the productions

(1) S—>ABv,, (4) B—>cBv,,
(2) A—>adbv,, (5) B—>cv;,
(3) A—abv,, (6) S—CD vs,
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Fig. 1. Membership space of L.

(7) C—>aCus, (9) D—>bDc v,
(8) C—av,, (10) D—> bc v,.
where the membership space L is as in Fig 1.
Now, let us generate a>b%c? by A-Ifg in practice. The derivation chains of
a*b?c? is obtained as follows:

(1) § = AB=2> aAbB— aabbB—> aabbch — aabbec,

Ve v, v, v, v,
2) s =6) CD? aCD=4) aaD=2> aach=4«) aabbcc,

The derivation chains of @> b%c? may be obtained from another source than the
derivation chains of (1) and (2). However, the same rules of the derivation chains
as (1) and (2) are used in those derivation chains, Thus the membership grade of
a*b?c? is obtained as follows:

@b c?) =W, Nvy Nvs Avg Av3) V(s Avs Avg Avy Avy)
=p, Vg =1,

In general, the membership grade of a”5"c”, a™ 5™ c", and a™b"c" is ob-
tained as ug (a"b"c™) = vy, ug (@"bMc") =v,,and ug (@™ b"c") = vg, respec-
tively. Therefore, let the cut point A = »,, then the type 1 language is obtained,
that is,

L(G,v)= {a"b"c" |nZ1}.

In the next place, we show that any context-free languages can be generated
by type 2 A-Ifg. It is enough to consider the case that the class of type 2 A-Ifg
whose membership space, L, is equal to {0,7}.

Suppose that the membership function u of type 2 A-Ifg G assigns the element
I for each rule r € J, then type 2 A-Ifg G may be regarded as the context-free
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grammar in the sense of formal grammar. Therefore the class.of the languages
L(G,I)is the class of context-free languages.

THEOREM 4. Type 1 N-Ifg is recursive.

Proof. From the definition of type 1 A-Ifg, it is easily determined whether
(e, v) is in L(G) or not by inspecting the productions of G. Then we can assume
that P does not contain a production (r)S > € u(r).

Suppose that there is a derivation § %» x (x € V7) whose derivation chain Cis
given as follows:

u(ry ) p(ry) ulrm)
> Oy =X,

C ,S > Oy > (473 - I
L8 T, m
where 7; is the label of rule and u(r;) is the grade of rule r;. In addition, suppose
that in the derivation chain C, a; is the same as «;, i <j. Now, consider the

shorter derivation chain C’, which is obtained by replacing the subchain

B(rien), u(rjer)
o -t——) A %‘L 04y
Fist Tj+1
in Cby
u(rjsr)
i Ojag -
)"'...1

Clearly C' is a derivation chains from S to x. And following equation holds.
p(rO A Ap N Ap() ApGria) N - Al
CSp(r) A Au(r) Aura) A Ap(rg). (18)

Thus the derivation chain C will not take part in the value u g (x). Therefore
the value of u ¢ (x) can be given by taking the supremum over all loop-free deri-
vation chains from § to x. That is to say, if G is a type 1 Alfg, |x|=n, and
| Vv U V| = k, then the value of ug (x) can be given by taking the supremum
over finite set of derivation chains from S to x of length / Sltk+---+k"
Next, in order to show the algorithm whether (x, ») € L (G) or not, we have
to show a way for generating all finite derivation chains from S to x of length
IS1+k+ - +k"= lo. As already mentioned, it can be determined whether
(e, ) € L(G) or not by inspecting the productions of G. Therefore, we also
assume that the set of productions P does not contain (r) S~ € u(r). Now, let
us define the set Q,, as the set of ordered pairs (o, R (a)) in which « is the
string of length at most n(= |x|) in (Vy Y Vr) and R"(e) is the membership
grade of ain G such that § é="> a by the derivations of at most m steps.
Formally,

O = {(, R™71(S, B) AR(B, @) | (B, R™ (S, ) € Om -1,
R(B, @)= u(r),and le| Sn}. (19)
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Clearly, @, = {(a, R(S, @) | R(S, @) = u(r), || < n}. We construct consecu-
tively Q1,Q2,Q3, -, Qm until m = Iy or Q,, = ¢, whichever happens first. It
is apparent that if Q,,, = ¢, then Q,,; = Quy = - - = ¢ since @, depends only
on Q,, —;. From above, it is evident that the set Q,, is finite set and all of the
ordered pairs of (x, g (x)) generated by all derivations of / (§ ly) steps can be
obtained. That (x, ») is the element of L (G) is equal to that (x,»;) isinU,,0,,
and v =sup {v; | (x,v;) €EVU,, Q,,, }, where x V7 and v, v; € L. Therefore, it can
be determined recursively whether (x, v) is the element of L(G) or not. It can
also be determined recursively whether x is the element of L (G, A) or not, since
x is the element of L (G, A) equal to (x, »;) in U, Qe and A Ssup ;10x, v;)
€U, Qm}

3.2 THE CLASS OF LANGUAGES GENERATED BY wlIfg

In this section, we shall consider the class of languages generated by *-Ifg’s
with cut points. As mentioned in Sec. 1, *-Ifg is defined as the Ifg whose mem-
bership space is a lattice-ordered group or a lattice-ordered monoid. Here we
would like to mention simply the property of a lattice-ordered group and a
lattice-ordered monoid. Both a lattice-ordered group (for short L) and a lattice-
ordered monoid (for short L,,) have the following properties.

(a) Both L, and L,, are lattice. Let the operation * be an operation of group
in L; or an operation of monoid in L, .
(b) Both an operation in L, and an operation in L, preserve the order, that
is,ifpgq, thena *p x b <a *q*b,foralla,bin L, or L,,.
(c) The distributive law holds such as

ax(pVg)*b=axp*xbVaxqxbh,
a*(pANg)*b=axpxbANa*q=*b.

From the properties of L or L,,, an interesting property can be seen in the
class of languages generated by *-Ifg.

THEOREM 5. The class of the languages L(G, \) generated by type 3 *Ifg G
with cut point properly includes the class of regular sets.

Proof. At first, we shall show that context-sensitive languages and context-
free languages are generated by the type 3 *-Ifg with cut point. Consider the
type 3 *-Ifg G whose membership space is L, such that L, = (@* X Q* X @* X
Q* X Q* X @*, X, V,\), where Q* is positive rational numbers, X is a multiple
operation, V is an operation of supremum, and A is an operation of infinum.
The productions are

(1) §—aS (2,1/2,1,1,2,1/2),
2) §—ad (2,1/2,1,1,2,1/2),
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(3) A—bA (1,1,2,1/2,1/2,2),
4) A—bB (1,1,2,1/2,1/2,2),
(5) B—aB (1/2,2,1,1,1,1),
(6) B—aC (1/2,2,1,1,1,1),
(7) C—bC (1,1,1/2,2,1,1),
@8 c——>b (1,1,1/2,2,1,1).
Then the L-fuzzy languages, L (G), generated by this type 3 #-I[fg G are

L(G) = {(@bia*p?, (2%, 2%~ 2i=1 211, 211 2y |, j, k, 1 2 1}

Therefore context-sensitive languages are obtained by choosing the suitable
cut points. For example,

LG, (1,1,1,1,1, 1)) = {a"b"a"b"In 2 1},

LG, (1,1,1,1,1,0)) = {a"b™d"b" InZ2m 21},

LG, (1,1,1,0,1,1)) = {a"b"a"b™ InZm 2 1},

LG, (0,1,1,1,1,1))= {@™b"a"b" InZm 2 1},
L(G,(1,0,1,0,1,1)) = {a"b"a™ b InZm 2 1,n 212 1}.

Also, context-free languages are obtained by choosing the suitable cut points.
For example,

L(G,(0,0,0,0,1,1)) = {"b"a™ b In,m, 121},

L(G,(1,1,0,0,0,0)) = {a"b™a"b! In,m,12 1},

L(G,(0,0,1,1,0,0)) = {a™b"d'b" In,m, 12 1}.
When the membership space is not Lg but L, , context-sensitive languages
and context-free languages are obtamed in the same manner as in the case of
L,. From the definition of type 3 =-Ifg, it is evident that any regular sets are

generated by type 3 *-Ifg with cut point. In the above type 3 *Ifg G with cut
point A = (0, 0,0, 0,0, 0), the language L (G, M) is the regular set.

Example. Consider the type 3 #-Ifg G whose membership space is the
lattice-ordered group Lg such that L, = (@* X @* X o' x 0, X,V,A).
The productions are

(1) S—aS (2,1/2,1,1),
(2) S—bS (1/2,2,2,1/2),
(3) S—cS (1,1,1/2,2),
@) S—a (2,1/2,1,1),
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B)S—b (1/2,2,2,1/2),
6) S—c (1,1,1/2,2).

Let us actually generate x € {a, b, ¢} in which the number of a's | x, |, the
number of b's | x,, | and the number of ¢'s | x, | are all two, and denote the set of
word as X, = {xlx € V¥, lx,1=|x,1=lx.1=2}. For the element abccab €
X, the derivation chain C is obtained as

2, 1/2,1,1) (1/2, 2, 2, 1/2) (1,1,1/2,2) (1,1,1/2,2)
; >a =y >abcS

C;S >as >abS yabccS
1 2 3 3
(2,1/2,1,1) 1/2,2,2,1/2)
/ yabccaS / yabccab.
1 5

Thus, the membership grade of abeeab is obtained as
ug (@beeab) =(2,1/2,1,1) X (1/2,2,2,1/2) X (1,1, 1/2,2)
X(1,1,1/2,2) X (2,1/2,1,1) X (1/2,2,2,1/2)
=(1,1,1,1).

In general, the membership grade of x € {x|x € VF, Ix, =1, Ixp =7, Ix,I
=k,and i,j, k 2 1}is given as

pe ()= Q7,25 20k, 2k1y,

Therefore many languages can be obtained by suitable cut points. For example,
LG,(1,1,1,1))= {xIxEVE, Ix,= Ixpl= ix,121},
L(G,(1,0,1,0)) = {xIx EVE, Ix,12 1x, 2 1x,121},
L(G,(1,1/4,1,1/2)= {xIx € VE, Ix,1 2 lxp 1 2lx,1-2,

x5 12 13,12 1 1-13,
L(G,(1/4,1/4,1/4,1/4) = {x|x € VE, llx, |- 1x, 152,
g - 1x 1S 2},
L@G,(1,1,1,0)) = {xlx€VE, Ix,1=1x, 12 Ix,1}.

4. NORMAL FORM OF TYPE 2 Ifg

In formal grammars, Chomsky and Greibach normal forms can be given for
any context-free grammars [9]. In this section, we shall show that Chomsky
and Greibach normal forms for type 2 Ifg can be constructed as the extension
of the corresponding notion in the theory of formal grammars.
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Chomsky and Greibach normal forms can be constructed for any /A-Ifg but
not necessarily for *-Ifg. That reason is reduced to the difference of member-
ship space, since we must consider both words and the grade of membership of
those words generated by Ifg.

Definition 6. An L-fuzzy language L(G) and an L-fuzzy language L(G") are
equivalent if and only if pg (x) = ug' (x), for any x € VF.
LEMMA 7. Fora type 2 NIfg G with e-rule, there exists the type 2 e-free
Mfg G’ such that
L(G)=LG)~ {(e,ug(e)} (20

Proof. Let W, = {A1(") A ~>eu@®)}, Wier =W U {41 A~ £ ul),
£ € Wi}, where A is a nonterminal of G and u(r) is the grade of the applica-
tion of the rule r of G. It is evident that if A € W;, then 4 %e. So the set of
productions of G' is constructed as follows:

When (r) A > & u(r) is a production of G, for the string w (¥ €) given by
taking the string away any element of W, from the string £, let the production
(") A > w u' (") be the production of G'. Suppose that w is obtained by taking
away the element A, A,, - -+, A,y of Wy, the value u' (') is given by

Y =u@)AR*(A,,e) \R*(4;,€) A\ - AR (A, €). (21)

Suppose that () B — £ p(r) is a production of G and B € W,,, then the
production (r') B — & u'(r’) is given as the element of the set of production P’,
and its value is u' (") = u(@).

Here suppose that the grade of membership of x € V7 by G is given as

ug (x) =Y [R(S, ;1) A= - AR(0oyy, a4AB;) AR (oA By, oykB) A - - -

AR (4B, 05wB) A+ + * AR (i, X1,
and the e-rule is applied only to the relation between o; £3; and &;wf;, then the

following equation should hold from the construction of G'.

me(x) '-‘\i/ [R'(S, ;1) A+ - AR (0yj, 3 AB;) AR (0 A i, o) A -+ -

AR (ain 3 x)]
=pg' (x)-
In the same way, i g (x) = g’ (x) holds for any string x € V.

LEMMA 8. Given type 2 Nfz, we can find an equivalent type 2 Nfg with
no productions of the form (r) A - B u(r), where A and B are nonterminals,
ris a label of rule, and u(r) is a value of membership function of rule r.
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Proof. It may be assumed that G is an e-free and a loop-free type 2 Alfz.
We construct the set of production P’ of G’ from P by first including all produc-
tions not of the form (r) 4 = B u(r).

Suppose that 4 =;>B and there is a loop-free derivation chain from 4 to B
such as

uer) ) ulrm)
A=—B, =B, =" '=)Bm :mB.
¥y £ m

And suppose that the production (rg) B > & u(r) is in P, where £ € Vj;. Then
we add to P’ all productions of the form (') A~ £ u'(r"), where the value of
membership function of #', u' ('), is given by

W) =u) Au) AN Aulrn) Aulro). (22)

*From the cgnstruction of the set of productions P’, it is evident that if
Sz x, thenS 2 xand pg (x) = pe ().

THEOREM 9. Chomsky normal form equivalent to a given type 2 Nfg can
be constructed. Chomsky normal form for Ifg has productions of the form
(r)) A > BCu(ry)or (r;) A ~a u(ry), where A, B, and C are nonterminal
symbols, a is a terminal symbol, and u(r;) is the value of the membership func-
tion of rule r;.

Proof. From Lemma 7 and Lemma 8, it may be assumed that the produc-
tions of a given type 2 Adfg G are of the form (r;) 4 > BB, + ** B,, u(ry),
m22,or (rj) A > a u(ry), where A4 is a nonterminal symbol, and By, B, " * -,
B,, are in Vy U Vr. If productions are of the form (r;) A - a u(r;), then those
are already in an acceptable form. Now consider the productions of the form
(riA—~+BBy "+ By, u(ry),m 2 2. Each terminal By is replaced by a new
symbol Cy, which appears on the right of no other productions. If By is a
terminal symbol, then a new production () Cy ~ By I is created and the value
1 is given such that

I=ur) Aulra) A Aury,), (23)

when the set of label isJ = {r,,7;, - ,7,}. And the production (r;) 4 >
BB, - - B,, u(r;) is replaced by (r;) A > C,C, - - - C,, 1’ (r}), where By =
C, if By is a nonterminal symbol, and u(r;) = u' (r;).

By these replacements, we have now the set of productions P’ of G’ with
productions being either of the form (r;) 4 > C,C, * * * Gy, u'(r}) 01 (r})
A->ay' (), where 4,Cy,Cy," *,Coy €V, a EVyp (= Vi), and p(rj) =
u(r;). Next we modify G' by replacing the production of the form (r;) 4
= CCy - - Cpy ' (r;) by the set of productions {(r;) A > C, Dy " (r}),
)DL > CoDy I, - (P —1) Dy = Cog - 1 Cog I}, Where Dy is an addi-

tional new nonterminal symbol to ¥y ,and u"” (r;") = ¢’ (r;). Then the new set of
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productions P"" of G' is obtained. Clearly P" is the set of productions either of
the form (r}') A »BC " (¢’ or (r}') A »a 1" (r}’). Solet G" be (Vy, V7,

P, S, J", 1", where Vi = Vy U {Cy} U {Dy},and ¥V = Vi, then G" is the
normal form equivalent to a given type 2 Adfg G.

COROLLARY 10. Greibach normal form equivalent to a given type 2 Nfg
can be constructed. Greibach normal form for type 2 Nfg has productions of
the form (r)) A - aa u(r;), where A is a nonterminal symbol, a is a terminal
symbol, and a € V3.

Proof. Since the proof is much the same as the proof in fuzzy languages [3],
we shall omit the proof.

Next we continue the discussion on the normal form for type 2 *-Ifg. Be-
fore mentioning the construction of the normal form for type 2 *-Ifg, we would
like to mention the property of definability on *-Ifg.

Definition 11. Definability on *-Ifg is that the grade of any word generated
by #-Ifg is obtained uniquely as the bounded value.

Generally speaking, derivation chains with loop are adrgitted intype 0, 1, and
2 grammars. That is, suppose that there is a derivation S zX whose derivation
chain C is given as

CiS= D= =D =Dy =P DUy =X,
and o; = o;. Then the following derivation chain C "is also the derivation chain
from S to x.
C§= =py=> D= DG=P Uy =P Dy, =X

Also, the derivation chains with infinite loop subchain o; = - - - = o; are the
derivation chains from S to x.
In this case, the value ug (x) is given by

peG)= V [uQry) * - (ulr) * % p()" * wly) * - * 0wl
n=1
Now let u(r;) * - - - * u(r;) = v and suppose that » <pr <Pt < where

vi=psp, - pt=px N v, then the value ug (x) can not be obtained
uniquely as the bounded value. In the above case, *-Ifg is not definable. Evi-
dently, both any A-lfg and loop-free *-Ifg are definable.

LeMmMa 12. Given a definable e-free type 2 *-Ifg whose membership space
is a complete lattice ordered group or a complete lattice ordered monoid, we
can find an equivalent e-free type 2 *-lfg with no loops.

Proof. Let G be a given definable e-free type 2 *-Ifg. As G is e-free type
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2 =-Ifg, we may consider only the case that there are loops between non-
terminals 4 and B, that is, there are derivations 4 %B and B = A

It may be assumed that G has no productions of the form (r)A =B u(r)
except that there is a loop between nonterminals 4 and B, because we can
construct the equivalent grammar with no productions of the form (r) A
- B u(r) in the same way as in Lemma 8 when there is no loop between non-
terminals 4 and B. Suppose that there is a loop between nonterminals 4 and
B such that (ro) 4 > B 00,(r,-)A >§,i=1,2,+-,n,(ro) B> A vy, and
(r,)B > v, i=1,2,- - ,m,are the set of all productions having A and B as
the premise. It is evident that §; can be derived from 4 by means of an infinite
number of derivations which can be obtained by applying the productions
(ro) A~ B 0, and (ro) B ~ A v, an arbitrary number of times before applying
the production (r;) B~ §; v;. Therefore the value of R"(4, {;) is given as
follows:

R*(4,%)=R(4,B) * R(B,§) VR(4,B) * R(B,A) * R(4, B) * R(B,{) V- - -
V(R(A4,B) *R(B,A))" *R(4,B) * R(B,{)V - - -,

=gy *v; V 0p * Vg * 0 *0; Ve V(ap *vp)" #ap #v; Vo,

= V (0 * ¥)" * 0o * ;. (24)
n=0
Since G is a definable *-Ifg, the value R" (4, {;) must be a boundary value, i.e., it
is required that (gg * vo)" * 0o * v; <p for any natural number n, where b is an
element of the membership space L. When the membership space L is a
complete lattice-ordered group, L is Archimedean, i.e., the following equation
holds.

(oo*vo)"éb*vj*o(,:)Oo*vo§e, (25)

where V]I' and g are inverse element of »; and 0y, respectively, and e is the unit
element of L. From the property of the operation * in a lattice ordered group,
it is clear that

e g %o Z(00 xv0)? 2+ 2 (0g ¥vo)" 2. (26)
So the value R*(4, §;) is given by R*(4, §;) = 00 * v;.

When the membership space L is a complete lattice-ordered monoid, L is
residuated, i.e., the following equation holds.

V{(oo*vo) *oo*v,} b=>3u,u=(0p *xvy)" = {vlv*oo*v,-b}

n=0

@7
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Since the above equation requires that 0o * vy <e, the value R*(4, %)) is also
given such that R*(4, §;) = 6o * v;. Similary, it can be shown that R*(B, &)
=V * 0;.
Let G' be the *-Ifg modified by replacing the set of productions
{(rO)A _>B OOs(ri)A _)Ei oiai= la 2, ot 9";(";))3_}‘4 Vo,
() B=>8vpi=1,2,---,m}

by the set of productions
{(r]')A_)K]OO *Vj)j= 1:21-'-:m:(ri)B_’EiV0 *0,‘,1"—' 1,2,"',’1}.

Then it can easily be seen that there are no loops in G’ and ug (x) = g’ (x) for
any string x € V.

THEOREM 13. Given a definable type 2 *-lfg G whose membership space is a
complete lattice-ordered group or a lattice-ordered monoid, there exists an
equivalent type 2 *-lfg G' with no loops.

Proof. Asin Lemma 12 we discussed the case where e-free type 2 *-Ifg has
loops, we shall discuss here on loops depending only on the e-rule.

Suppose that the *-Ifg G has productions such as (ro) A > A4 v, (r1) A
->¢p,(r;) A~ § o, where A is a nonterminal, £ # €, and & 2 €. Then £ can be
derived from 4 by means of infinite number of derivations which can be ob-
tained by applying the productions (ro) A - A4 v and (r,) A = € p an arbitrary
number of times before replacing A4 by £. Therefore the value R*(4, £*),i =
0,1, 2, -+, are obtained as follows:

R'(A,e)=R(A,e)VR(A,AA) * R(AA,A) *R(A, €)
VR(4,AA) * R(AA, AAA) * R(AAA, AA) * R(AA4, A)
*R(A,e)V -+,

=pVvrpxpV@sp)2«pV---V@*p)"xpV---. (28)

Similary, we can show that
RY(4,5)=R(4,5)VR(A,44) s R(A4,A) * R(A,E)V - -,
=gVuxpsoV@=*p)2xaV---V@=*p)'*xgV---,
R'(A,6)=vroxoVvsvspx0? Vo (v=*p)? xo?
VeerVos@sp)t 02 V.-,
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R+(A,Em)=vm_l *Om va-l *(V*p) % Um

V_,_Vym—l *(V*p)n*omv...,

(29

Since G is a definable #-/fg and its membership space is a complete lattice-
ordered group or a complete lattice monoid, the value R*(4, £9,i=0,1,2,
-+, are obtained in the same way as in the proof of Lemma 12 such that
R'(A,e)=p,R*(4,5)=0,R* (4, %) =vo®, - ,R*(4,£™)=v""g™,- -+

Let G’ be the *-Ifz modified by replacing the production (ry) A -+ A4 v by
the production (r5) A > A£ vo. Then it can easily be seen that G' has no loops
and ug (x) = ug(x) for any string x € V.

THEOREM 14. Given a definable type 2 *-lfg G whose membership space is a
complete lattice-ordered group or a complete lattice-ordered monoid, there
exists an equivalent Chomsky normal form.

Proof. It may be assumed that G has neither loops nor productions of the
form (r) A > B u(r) from Lemma 12 and Theorem 13. Therefore Chomsky
normal form grammar G’ can be constructed in the same way as in Theorem 9,
that is, it can be constructed by means of replacing the operation A and value /
in Theorem 9 by the operation * and value e, respectively, in which the
operation A is the operation of infinum, the operation * is the operation of
group or monoid, and value e is the unit element.

Example. Consider the following definable type 2 *-Ifg G in which Vjy =
{4,B,S}, Vi = {a, b}, and membership space is a complete lattice ordered
group such that L = (@* X @*, X, V, A). And the productions are given by

(1) S —adB (2,1/2), (5) A—e (1/3,1/4),
(2) A—> A4 (2,3), (6) B—bB (1/2,2),
(3) A—sad (2,1/2), (7) B—A4 (1/3,3),
) A—B (1,1/2), ®). B—sa (1/2,2).

To find the equivalent *-Ifg in Chomsky normal form, we proceed as
follows.

Step 1. Asloops between nonterminals A and B are derived by applying the
productions (4) 4 > B (1, 1/2) and (7) B > A (1/3, 3) an aribtrary number of
times, Lemma 12 is applied to the above productions.

The resulting set of productions is

P’ (1) S—>adB (2,1/2), (3) A—ad (2,1)2),
(2") A—44 (2,3), 4y A—bB (1/2,1),
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(5") A—b  (1/2,1), 9") B— A4 (2/3,9),
(6) A—e  (1/3,1/4), (10) B—b  (1/2,2),
(7") B—bB (1/2,2), (11) B—e (1/9,3/4).

(8" B—ad (2/3,3/2),

Step 2. Since there are productions (2) A = A4 (2,3)and (6) 4 > €
(1/3, 1/4) in P’, the following new set of productions P" is obtained by means
of the same modification as in the proof of Theorem 13.

P", (1" S—>adB (2,1/2), (7" B—bB (1/2,2),
2"y A—>adA (4,3/2), 8" B—ad (2/3,3/2),
(3" A—>ad (2,1/2), 9" B—>A4(2/3,9),
4"y A—bB (1/2,1), (10" B—>b  (1/2,2),
(5")y A—b  (1/2,1), (11" B—e (1/9,3/4).

6" A—se (1/3,1/4),

Step 3. Since the set of productions pP" does not derive loops, Chomsky
normal form with the set of productions P'" can be obtained in the similar
manner of Theorem 9.

P, 1"y S — DB (2,1)2), (8" B — C14 (2/3,3/2),
2"y Di— 1A (1, 1), ©" B—> 44 (2/3,9),
(3"") A — DA (4,3/2), (10" B — ;B (1/2,2),
@" A —CA 2,1/2), 1"y B—b  (1/2,2),
(5" A — C,B (1/2,1), 12"y B — e (1/9,3/4),
6"y A —b (1/2,1), 13"y Ci—sa  (1,1),
(7"Y 4 — e (1/3,1/4), 14" ¢,—b (1,L).

COROLLARY 15. Greibach normal form equivalent to a given definable type
2 %-lfg whose membership space is a complete lattice-ordered group or a com-
plete lattice-ordered monoid can be constructed.

5. CONCLUSIONS

We have defined L-fuzzy grammars by introducing the concept of L-fuzzy
sets and mentioned some properties of L-fuzzy grammars and languages
generated by L-fuzzy grammars. In this paper, we have mainly discussed L-
fuzzy grammars whose membership spaces are commutative. The interesting
results for the properties of languages generated by L-fuzzy grammars whose
membership spaces are not commutative will be obtained, since the membership
grade of a string generated by such L-fuzzy grammars depends not only on the
rules but also on the order of applying rules.
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The membership grade of a string generated by an L-fuzzy grammar may be

reregarded as an element which is described by some arguments of characteristic
parameters, Therefore, it may be interesting to obtain the grade of similarity of
incorrectness or ambiguity of strings by means of defining the distance between
strings generated by an L-fuzzy grammar.

REFERENCES

BN e

[= %]

10.

11

. J. A. Goguen, L-fuzzy sets, J. Math. Anal. Appl. 18,145 (1967).

. L. A. Zadeh, Fuzzy sets, Inform, Control 8, 338 (1965).

. E.T. Lee and L. A. Zadeh, Note on fuzzy languages, Inform. Sci. 1,421 (1969).

. T. Huang and K. S. Fu, On stochastic context-free languages, Inform. Sci. 3, 201
(1971).

. A. Salomma, Probabilistic and weighted grammars, Inform. Control 15,529 (1969).

. M. Mizumoto, J. Toyoda, and K. Tanaka, General formulation of formal grammars,
Inform. Sci. 4,87 (1972).

. M. Mizumoto, J. Toyoda, and K. Tanaka, N-fold fuzzy grammars, Inform. Sci. 5,
25 (1973). .

. M. Mizumoto, Fuzzy Automata and Fuzzy Grammars, Ph.D. Thesis, Osaka University,
Feb. 1971.

. J. E. Hopcroft and J. D. Ullman, Formal Languages and Their Relation to Automata,

Addison-Wesley, Reading, Mass. (1969).

S. Ginsburg, The Mathematical Theory of Context-Free Languages, McGraw-Hill,

New York (1966).

. G. Birkhoff, Lattice Theory, American Math. Soc., Rhode Island (1942).

Received June, 1973



