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Fuzzy grammars on Boolean lattices (B-fuzzy grammars) are newly defined and their basic
properties are investigated. B-fuzzy grammars are defined as the extension of fuzzy grammars
by Lee and Zadeh, where the grades of the application of rewriting rules of B-fuzzy gram-
mars are the elements of Boolean lattice rather than the elements of unit interval [0, 1].

It is shown that type 2 B-fuzzy grammars can generate type 1 languages though type 2
fuzzy grammars cannot generate type 2 languages. And the closure properties of B-fuzzy
grammars are also studied.
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1. INTRODUCTION

In [8] we have derived various kinds of formal grammars with weights by
incorporating the algebra systems with the formal grammars systems. There
we evaluate the weights of sentences by corresponding the element of the
appropriate algebra (say, lattice ordered semigroup and distributive lattice)
to each rewriting rule of a formal grammar and by performing the operations
of the algebras in the case of the application of the rewriting rules in a
derivation. Among these sorts of formal grammars with weights are the
well-known probabilistic grammars [2, 5, 12], fuzzy grammars {2, 6, 7, 10, 11,
15], and weighted grammars [12]. For example, probabilistic grammars are
the formal grammars with weights such that the values in the range [0, 1] are
adopted as the weights (or probabilities) where, needless to say, the con-
dition of probability is assumed to be satisfied, and + (addition) and x
(multiplication) are used as the operations. In addition, weighted grammars
can be formulated by extending the range [0, 1] in probabilistic grammars to
the set of non-negative real numbers [0, c0). Fuzzy grammars are defined by
the values in [0, 1] to the weights and by using max and min as the operations.

In this paper B-fuzzy grammars are newly defined as the extension of
fuzzy grammars. B-fuzzy grammar is a fuzzy grammar in which the weight
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(or grade) of the application of the rewriting rule is an element of a Boolean
lattice and the operations v (= lub) and A (= glb) are used in the case of the
application of the rewriting rules in a derivation.

We show that type 2 (context-free) B-fuzzy grammars can generate type 1
(context-sensitive) languages although type 2 fuzzy grammars cannot gener-
ate type 1 languages [10]. But the generative power of type 3 (regular)
B-fuzzy grammars is shown to be equal to that of the ordinary type 3 gram-
mars by using the newly defined B-fuzzy automata. Moreover, the closure
properties of B-fuzzy languages characterized by type 2 and 3 B-fuzzy
grammars are studied. For example, type 3 B-fuzzy languages are not closed
under the complement in the sense of B-fuzzy sets. However, the complement
of type 3 B-fuzzy language can be shown to be characterized by another kind
of B-fuzzy grammar, namely, AvB-fuzzy grammar.

2. B-FUZzZY SETS AND B-FUZZY LANGUAGES

In this chapter we shall briefly review B-fuzzy sets and B-fuzzy relations by
J. G. Brown [1] and J. A. Goguen [3] for the purpose of B-fuzzy grammars
defined later. Moreover, using the concept of B-fuzzy sets, we shall define
B-fuzzy languages and their operations such as union, intersection, comple-
ment, concatenation, and Kleene closure,

L-Fuzzy Sets

After L. A. Zadeh [14] introduced the concept of fuzzy sets, J. A. Goguen [3]
defined L-fuzzy sets as an extension of fuzzy sets.

An L-fuzzy set A in a space X = {x} is characterized by a membership
function p, as follows.

Ha: X =L o

where L is called a membership space and the value p,(x) in L represents the
grade of membership of x in A.

A membership space L may be assumed to be a partially ordered set or,
more particularly, a lattice [3].

When L is the unit interval [0, 1], an L-fuzzy set Ais a fuzzy set originated
by L. A. Zadeh [14]. If L contains only two points 0 and 1, then 4 is a non-
fuzzy set and its membership function reduces to the conventional character-
istic function of a non-fuzzy set.

B-Fuzzy Sets
Let L be a Boolean lattice B, then an L-fuzzy set becomes a B-fuzzy set
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introduced by J. G. Brown [1]. Therefore, B-fuzzy set 4 is an L-fuzzy set
which is characterized by a membership function such as

Uy X = B, @

where X is a non-nullset and B is a Boolean lattice.
B-fuzzy set A can be represented as a set of ordered pairs of x and its grade
14(x) as follows.

A = {(x, pax)}, x € X. 3

The notions of containment, equality, union, intersection, and comple-
ment of B-fuzzy sets are easily derived as extensions of the notions in the
ordinary set theory.

Let A and C be two B-fuzzy sets in X, and let u,, pc be membership
functions of 4 and C, respectively, then for all x in X

Containment A < Cepdx) = pe(x) 4)
Equality 4 = Ce py(x) = pcx) ®
Union AV Cepy,dx) = pa(x) v pe(x) 6
Intersection A Ce pyc(x) = pa(x) A pe(x) @)
Complement A< pi(0) = pax) 8)

where the operations =, v, A, and ~ represent an order relation, lub, glb,
and complement in a Boolean lattice B, respectively.

Moreover, let 7and 0 be greatest element and least element of B, respectively,
then universal B-fuzzy set and empty B-fuzzy set are defined by the following:
For all x in X,

Universal B-Fuzzy Set
Ue puy(x) = 1. )

Empty B-Fuzzy Set
$ <> ) = 0. (10)
J. G. Brown [1] introduced an interesting definition concerning with
convex combination of B-fuzzy sets.

Let A, C, and A be B-fuzzy sets. The convex combination of 4, C, and A
is a B-fuzzy set (4, C; A) and is defined by the relation:

Convex Combination

AL CA=AnADHUVMANO). .y
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A basic property of the convex combination of 4, C, and A is expressed by
AnCes (4, C;A) = AuC, forallA. - (12)

The operations =, U, N, and ~ on B-fuzzy sets have a number of algebraic
properties. Some of these are as follows:

If 4, C, and D are B-fuzzy sets and U and ¢ are universe and empty
B-fuzzy sets, respectively, then we have

i) A = A (reflexive law) (13)
il) 4 € C,C < A= A = C (anti-symmetric law) (14)
iiiy A € C, C € D= A < D (transitive law) (15)
iv) AuAd = A, An A = A (idempotent law) (16)
V) AUC=CuUA4,An C= Cn A (commutative law) )

~(AuQuD=Au(CuD) .

vi (AnC)n D = A4n(Cn D) (associative law) (18)
= A
vii) j 2 Ej 8 8 _ A} (absorption law) (19)

Auv(CnD)=(AuC)n(4v D)
An(CuD)y=ANnC)u(dn D)
ix) A =4 (involution law) (1)
%) (Au Q)= [4_- N (E

(AnC)y=A4AvuC
xi) j :} Z: Z’ Z: g Z ;} (identity law) (23)
xi) Aud=U, AnA=¢ (complement law) (24)

From the properties concerning with B-fuzzy sets, we see that B-fuzzy
sets form a Boolean lattice. It should be noted that fuzzy sets by Zadeh do
not form a Boolean lattice but a distributive lattice.

viii) } (distributive law) (20)

} (De Morgan’s law) (22

B-Fuzzy Relations

A B-fuzzy relation R in the product space Xx X = {(x,»)|x,ye X} is a
B-fuzzy set in X x X characterized by a membership function pg as

Ur: Xx X > B, (25)
where B is a Boolean lattice. More generally, an n-ary B-fuzzy relation in a
product space X = X, x X, x ... x X, is a B-fuzzy set in X characterized
by an n-variate membership function pg(xy, X3,..., X,), X; € X3, i = 1,2,..,
n. ‘
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Composition of B-Fuzzy Relations

Let R; and R, be two B-fuzzy relations in X x X, then by the composition
(or product) of R, and R, is meant a B-fuzzy relation in X' x X which is
denoted by R; o R, and is defined by

Hriory(% 2) = V [ug (x, ¥) A pg,(3, 2)], (26)

where v and A are the operations of lub and glb in B, respectively.
It is noted that we can define another kind of composition of B-fuzzy
relations (denoted by R, - R,) by changing v and A in (26), i.e.,

KR, -Ry(X> 2) = n [ur, (% ¥) Vv ur,(ys 2)]. @7

In what follows, in order to avoid a confusing multiplicity of the composi-
tion, we shall be using (26) for the most part as our definition of the composi-
tion of B-fuzzy relations.

Note that the operation of composition of B-fuzzy relations has the associa-
tive property, i.c.,

Ry~ (Rz ° Rs) = (R1 ° Rz) ° Rj. (28)

The same holds for the composition in (27).
Therefore let R, R,,..., R, be B-fuzzy relations on X, then the com-
position R; e R,...c R, of R, R,,..., R, can be defined as

ﬂR1cho ...oRn(xl ] xn+ 1)

= Vv [ﬂx,(xuxz) A pr(X25X3) A voi A fig (X, Xpi )], (29)

X2ye ooy Xn

B-Fuzzy Languages

Using the concept of B-fuzzy sets, we shall define B-fuzzy languages. Let
Z be a finite non-empty alphabet. The set of all finite strings over I is denoted
by Z*. The null string is denoted by ¢ and is included in T*,

A B-fuzzy language L is a B-fuzzy set in £* characterized by a membership
function p; such as

LI o B (30)

The B-fuzzy language L may be represented by a set of ordered pairs of
string x in Z* and its grade of membership y;(x) in B, i.e.,

L= {(x, p()}, xeE*. | @31)

The operations of containment, equality, union, intersection, and comple-
ment for B-fuzzy languages are defined in the same way as those of B-fuzzy
sets mentioned before (see (4) ~(8)). Moreover the notions of concatenation
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and Kleene closure of B-fuzzy languages can be defined as an extension of
that of ordinary formal languages [4] by the following;

Let L, and L, be two B-fuzzy languages in £*, and y,;, and p;, be member-
ship functions of L, and L,, respectively.
Concatenation

The concatenation of L, and L, is a B-fuzzy language denoted by L, - L, and
is defined as follows. Let a string x in X* be expressed as a concatenation of a
prefix string u and a suffix string v, that is, x = uv. Then

BLioL,(X) = ‘: [, (@) A p, @] (32)

Furthermore, we can define the following concatenation of B-fuzzy languages
by changing v and A in (32), that is,

Hren®) = A @) v B @)1, (33)

where v in (32) and A in (33) are taken over all prefix u of x.

Kleene Closure

By using the concept of concatenation L; oL, or L, + L,, Kleene closure
of a B-fuzzy language L (denoted as L* or L) is defined by

L*={eg§ ULULoLULoLeLu .. (34)
L={enLAL-LAL-L-Ln .. (35)

3. B-FUZ2Y GRAMMARS

In this chapter B-fuzzy grammars are defined as an extension of fuzzy gram-
mars by Lee and Zadeh [2, 6, 8, 10, 11, 15] by using the concept of B-fuzzy
sets and B-fuzzy relations,

It is shown that type 2 (or context-free) B-fuzzy grammars can generate
type 1 (or context-sensitive) languages by setting a threshold. But type 3 (or
regular) B-fuzzy grammars can generate type 3 (or regular) languages only.

3.1. B-Fuzzy Grammars

DErFINITION 3.1 A B-fuzzy grammar (BG for short) is a system such that

BG = (VNl VT:Ps S’ Js 223 B)s (36)
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where
1) Vy is a nonterminal alphabet.
2) Vi is a terminal alphabet.
3) Sis an initial symbol in Vy.
4) P is a finite set of productions such as
(r) u—-v pr), (37

where reJ, and u — v is an ordinary rewriting rule with u € V¥—{e} and
ve(Vy u Vp*. u(r)is the grade of the application of the production r, which
is denoted in (6).

5) Jis a set of (production) labels as shown in (4), i.e., J = {r}.
6) puis a membership function such as
u:J - B. (38)
u may be called a B-fuzzy function.
7) B is a Boolean lattice. It is assumed that B is finite.

Next we shall explain a derivation chain with fuzzy grades (that is, B-fuzzy
derivation chain),

If(r)u = v u(r)is in P, and o and B are any strings in (Vy U V¥, then

u(r)
oauf —— avf, (39)
r

and opf is said to be directly derivable from auf with the grade u(r) by the
production r. If oy, a5,..., &, are strings in (Vy v V)* and

#(r1) ur2) n(rm)
g —=> 0y, 0y ——> K geeey By g ~—> Uy
ri r2 rm

then a,, is said to be derivable from «, by the productions ry, r,,..., r,,. The
expression

u(r1) n(r2) #lrm)
g ——> 0y —=> Oy —=> ... —=> Uy (40)
rp ra 'm

will be referred to as a B-fuzzy derivation chain of length m from «, to «,, by
the productions r, Fy,...; Fp-
When «, = S, «,, = x(e V%) in (40), that is,
n(r1) 8(r2) B(rm)

S——> o —a;—> ... —> X, (41)
ry rz rm
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S is said to generate a terminal string x by the productions 7, r5,..., r,. In
general, there are more than one B-fuzzy derivation chain from S to x.
We shall next explain B-fuzzy languages characterized by B-fuzzy grammars.

DEFINITION 3.2 The grade of the generation of terminal string x (e V'7) by
a B-fuzzy grammar BG, which is denoted as pgg(x), is given as follows by
using the concept of the composition of B-fuzzy relations of (26) and by the
B-fuzzy derivation chain from § to x of (41). Clearly upg(x) is in B.

Hpe(x) = Vv [u(ry) A plra) A .o A pra)l, (42)
where lub v is taken over all the B-fuzzy derivation chains from S to x.

Tt is assumed that the grade of the terminal string x is 0, i.e., upg(x) = 0,
if there do not exist any derivation chains for x from S, where 0 is a least
element in a finite Boolean lattice B.

We can define another kind of B-fuzzy grammar denoted by AVBG by
using the composition of B-fuzzy relations in (27). The grade of the genera-
tion of terminal string x by AvBG is given by

Alu(ry) v u(ry) v ... v u(r)l... if there exist
U avpe(X) = derivation chains for x. (43)

L...if there exist no derivation chains for x.

where A is taken over all the derivation chains from S to x.

Therefore we may call the B-fuzzy grammar defined in Definition 3.1 a
vABG due to the duality of AvBG. In this paper, unless stated especially,
by a “B-fuzzy grammar” we shall mean a vABGT.

DERINITION 3.3 A B-fuzzy language characterized by B-fuzzy grammar BG
is a B-fuzzy set in V¥ defined by the membership function pzs(x) as denoted
in (42) and is shown to L(BG).

DEerINITION 3.4 Let BG be a B-fuzzy grammar and A an element of B, then
a A-B-fuzzy language by BG with a threshold A is a subset of ¥'F and is defined
by

L(BG,2) = {x e V| pa(¥) > 1}. (“44)

+Using the convex combination of B-fuzzy sets, we can also define a comvex B-fuzzy
grammar (CBG) of VABG and AVBG with the property that the grade of the generation
of x is defined as

sera(x) = [a A pyasc(®] V [& A prvec(X)],

where «, & is in B and & is the complement of «.
Obviously, if a = I, then CBG becomes VABG, and if « = O, then CBG becomes
AVBG.
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Moreover, we can also define another language by the following.

DerniTION 3.5 For a B-fuzzy grammar BG and the threshold 1 in B, a
language L(BG, = , A) is defined as

L(BG, = ,2) = {xe V7 l pp(x) = A}. 45)

Now we shall give an example of the B-fuzzy grammar with CF rules and
show that this type 2 (or context-free) B-fuzzy grammar can generate type 1
(or context-sensitive) language by setting a threshold. Therefore, from this
example it is founded that the class of type 2 A-B-fuzzy languages properly
contains the class of context-free languages.

Example 3.1 Let BG be the type 2 B-fuzzy grammar (Vy, Vry, P, S, J, u,
B), where Vy = {S, 4, B, C, D}, V; = {a, b, ¢}, B is the Boolean lattice in
Figure 1, and P is as follows.

1) §S—> ABx,, 6) BoclI
2) §S—> CDx,, 7 C—aClI
3) A—>adbl, 8 C—al
4 A->abl, 9 D—bDcI
5) B> c¢BI, 10) D - bel.

1

X1 sz

o

FIGURE 1 Structure of B,

A string, say, a*b*c? is obtained by the following fuzzy derivation chain.

x1 I I I I
S —— AB—— aAbB —— aAbcB —— a*b*cB —— a*b*c?,
1 3 5 4 6

where the underbar in the intermediate strings represents the location where
the next rule was applied.
The grade of the generation of a2b%c? by this derivation is given as follows.

Xy ATIATATAT=x,.

Similarly, for the same string a*5*c?, the following derivation is also possible.
X2 I I I I

S—— CD —— aCD —— aCbDc —— a*bDc —— a*b*c*.
2 7 9 8 10
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In this case we have x,. Furthermore we can also give the different fuzzy
derivation chains of a?b*c?, all the grades of which are easily shown to be x;
orx,.

Hence the grade of the generation of ¢?b*¢? by this B-fuzzy grammar BG
is given from (42) as follows. '

ﬂBG(azbzcz) = x1 \ xz = Iv

Continuing in this manner we can obtain the grade u;(x) for each terminal
string x € V¥. Hence the B-fuzzy language generated by this type 2 B-fuzzy
grammar is from Definition 3.3 as follows.

L(BG) = {(@b'c", )| i = 1} v {(@b'c), x) | i,j 2 1,i # j}
v (@, xy) | 6,5z 1,0 # j}.
Therefore we have from (44) and (45)
L(BG, x,) = L(BG, x;) = L(BG, = ,I) = {a'b'c'|i 2 1}.

It should be noted that a B-fuzzy grammar reduces to a conventional
phrase structure grammar when the grades of productions are all equal to
I (greatest element of Boolean lattice).

Therefore, from above example we have the following theorem.

THEOREM 3.1 The class of A-B-fuzzy languages generated by type 2 (or
context-free) B-fuzzy grammars properly contains the class of type 2 languages.

We have shown that the generative power of B-fuzzy grammars with type
2 rules is enhanced by introducing a Boolean lattice as the grades of pro-
ductions though fuzzy grammars by Lee and Zadeh cannot generate type 1
languages [10].

Next we shall show that type 3 (or regular) B-fuzzy grammars cannot
generate type 2 languages but type 3 languages only by using B-fuzzy auto-
mata in spite of the generative power of type 2 B-fuzzy grammars.

3.2. Type 3 B-Fuzzy Grammars

At first we shall define B-fuzzy automata as an extension of fuzzy automata
by Wee and Fu [9, 11, 13] and show that the languages accepted by B-fuzzy
automata are type 3 languages and that B-fuzzy automata are equivalent to
type 3 B-fuzzy grammars.

DEFINITION 3.6 A B-fuzzy automaton A over the alphabet X is a system
A=(S,s;,{F(@|ack},G, B), 45)
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where
1) S = {sy,5,,..., 5.} is a non-empty finite set of internal states.
2) s, is an initial state in S.
3) G is a subset of S (the set of final states).

4) F(a) is a fuzzy transition matrix of order n such that

F(a) = [fulsis a, s j)], (46)

where s, 5;€ S,ae X, and n = #(S). And f is a membership function ofa
B-fuzzy set in Sx X x S; ie.,

f4:SxEZxS — B, 47

where B is a finite Boolean lattice. f, may be called a B-fuzzy transition
function and the value f,(s;, a, 5;) represents the grade (or weight) of tran-
sition from state s; to state s; when the input is a.

Remark If Boolean lattice B consists of two element {0, I}, B-fuzzy
automaton is reduced to a conventional (non-)deterministic finite automaton.

The grade of transition for the input string is defined as follows by using
the concept of the composition of B-fuzzy relations in (26).

DEeFINITION 3.7 Fore, x,yeX*and s,t€ S

I ifs=1t,
fA(S9 &g, t) = (48)
0 ifs#1t.
fA(Ss XY, t) = ZS VA(S’ X, q) A fA(q’ s t)]' (49)

where I and 0 are the greatest and least elements of the Boolean lattice B.
The operations v and A are lub and glb of B, respectively.

Using the above definition, the domain of transition matrix F(a), a € Z,
of a B-fuzzy automaton A can be extended from I to Z* as follows.

DeFINITION 3.8 For a string x = @,4,...a, € 2*, a;€ £ U {g}, define nxn
fuzzy transition matrix F(x) by the following.

i) Fe) = E, }

ii) F(x) = F(a,)~ F(a,) ... > F(a,,).
where E is an n x n identity matrix such as

(50)

I i=j],
E-= [eij]‘i’eij =
0 i#].
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The operation o of B-fuzzy matrices are defined by
C=AcB=c;= vy [aix A byjl,

where ¢;;, a;, by; are in the Boolean lattice B. Note that this operation of
matrices corresponds to the composition of B-fuzzy relations in (26).

Obviously, the (i, j)th element of fuzzy transition matrix F(x) for an input
string x is f,(s;, X, 5,) defined before in (49).
DEerINITION 3.9 The B-fuzzy set in * defined by a B-fuzzy automaton A4 is
characterized by the following membership function u, and is denoted by
L(A).

”A(x) =V fA(sl,x’ sj‘): (51)

5reG

where s, is the initial state of 4 and s, € G is the final state.

u,(x) is designated as the grade of transition of 4, when started with the
initial state to enter into the state in G after scanning the input string x. Then
an input string x is said to be accepted by A with grade (or weight) p (x).

Example 3.2 Let X = {a} and let a B-fuzzy automaton be
A = ({s1,52,53}, 51, {F@}, {s3}, B),
where F(a) is given as
S1 Sz 53
si[1 x5, X,
Fl@) = s, x, x, I |,
s31 % 0 x,
and B is a Boolean lattice in Figure 1.

Then, for example

pA@ = fu(s1,a,53) = X,
palaa) = f4(sy, aa, s3)
= [fu(51,a,51) A fuls1, 0 53)]
V [fu(s1, @, 53) A fuls2, @, 53)]
v [fA(Sls a, 53) A fA(SS’ a, 33)]
= AX)V(xyADV (X3 A Xy)
= X,.
DEFINITION 3.10 Let A = (S, s,, {F(a)|a€ X}, G, B) be a B-fuzzy auto-
maton and A the element of B. The set of all input strings accepted by A with
parameter A is defined as
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L(4, ) = {x| py(x) > i}, x e T*. (52)
A is called a threshold of A and L(A, 1) a A-B-fuzzy language.

THEOREM 3.2 A-B-fuzzy language L(A, 1) is a regular language.

Proof Let a B-fuzzy automaton A be A = (S,s,, {F(a)|aeZ}, G, B).
Define the relation R on X* by the definition. For any x, y € Z* and any
tesS, let

ny c’fA(sl’ X, t) =fA(s1,y3 t),

where s, is an initial state of 4.
Then R is clearly an equivalence relation on X*. Furthermore, for any
zeL¥,

fA(Sl » X2, t) = VS [fA(sl s X5 q) A fA(q, Z, t)]
qe
= q\;SUA(Sl s Vs q) A fA(q? Z, t)]

= fA(sl » YZ, t)'

Therefore we have xz R yz.

Hence, R is a right congruence relation on *, Let the number of elements
of the Boolean lattice B be m and the number of states of 4 be n, then the
number of equivalence classes by R is at most m". Anyhow R has finite rank.
Moreover, it is easily verified that L(A4, 1) is the union of some of the equi-
valence classes. Hence L(d, A) is a regular language.

THEOREM 3.3  Given type 3 B-fuzzy grammar, there exists B-fuzzy automaton
A such that

L(4) = L(3-BG)
and vice versa.

Proof (<) Lettype 3 B-fuzzy grammar be 3-BG = (Vy, Vr, P, 0,J, u, B),
then B-fuzzy automaton A4 is 4 = (S,s, {F(a)|ae V;}, G, B) and is
defined as follows. It is assumed that Boolean lattice B of 3-FG is the same
as that of A. The set of states of 4 is S = {¢} U {<4) | 4 € V,}. The initial
state s, is {o >, where o is the initial symbol of 3-BG. The set of final states is
{<¢>}. The fuzzy transition matrix F(a), @ € V7, of order n (= #(S)) is
obtained by the following.

i) For each non-terminal production (r) X — aY u(r) in P with ae ¥y
and X, Y e Vy, define

JaKXD, a, YD) = u(r).
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ii) For each terminal production (r) X — @ u(r) in P,

fA(<X>: a, <¢>) = -u(r):
where (¢} is final state of 4.

iii) All the other £, are defined to be equal to 0 (the least element of the
Boolean lattice B).

(=) For a B-fuzzy automaton 4 = (S, sy, {F(a,) | a, € £}, G, B), let type
3 B-fuzzy grammar be 3-BG = (Vy,Z%,P,0,J,u, B), where Vy=
{¢si) | si€ S}, 6 = (s1), and the productions of 3-BG are obtained by the
following. To the element f,(s;, ax,s;) of fuzzy transition matrix F(a,)
correspond the rewriting rule such as {s;> - a, {s;», where 1 £i,j<n
15 k= hn= #(S),and & = #(Vy). Then the number of the correspond-
ing rules, that is, the number of their labels is #24. On the other hand, the
terminal rules are given as follows. For each rules {s;> — a, {(s;> obtained
above, if s; is in G, that is, s5; is a final state, then we construct a terminal
rules such as {s;> — a,. Thus the number of labels of the terminal rules is
hng, where g = #(G).

Hence, the total number of labels, i.e., #(J) is hn®+hng (= t). We can
appropriately attach the labels to the rules obtained above without over-
lapping. Here it is assumed that the label r of the non-terminal rule () {s;> —
a, <s; isin {1, 2,..., in*}, and the label  of the terminal rule (r) {s;> — a;
isin {hn?+1,..., t}.

Next, we shall obtain the grade u(r) of the rule r.

i) For each non-terminal rule (r) {s;> - a; {5, the grade u(r) is given as

H(r) = fa(se, @, 55)-
ii) The grade u(r) for the terminal rule (r) {s;> — @, is given as follows if
this terminal rule is obtained from the rule (p) {s;> = a, {s;) with s, € G.
B(r) = fulSis @iy Sp)s
where s, isin G, im*+1 S r < t,and 1 £ p £ hn’.
From the above formulations of 3-BG and 4 we can easily show that
pa(x) = p3—pe(x) for each x in V}. Therefore the theorem holds.

Example 3.3 Let type 3 B-fuzzy grammar be 3-BG = (Vy, V1, P, 0,J,
u, B), where Vy = {0, 4, B}, V1 = {a, b}, and the fuzzy productions are

)o-+ad x, 5) A-bB x,
2) 6 > bB x,, 6) BobA y,
NA-sad x,, HA->b y3

49 Boas yg, 8) B—oa I
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And B is a Boolean lattice as in Figure 2. Then we can construct a B-fuzzy
automaton A4 by the following. Let 4 be 4 = (S, <o), {F(a), F(b)}, {¢), B),
where £ = ¥ and B is the same as in Figure 2. § = {{o), {4), {B), {¢D},
and the initial state is {¢). Fuzzy transition matrices F(a) and F(b) are as

follows.

(o> 4> {B) (¢

@[ 0 xy
Fla) = {4 0 x;
(B> »
($>L 0
Sy
F(b 0
® = 0
. 0 0

0
0
0
0
X2
X1
0
0

0

S ~N O

<o

Example 3.4 Let A = (S, sy, {F(a) | aeX}, G,B) be a B-fuzzy auto-
maton, where S = {s,,5,},% = {a,b}, G = {s,}, B is in Figure 2, and

fuzzy transition matrices F(a) and F(b) are

§; 8

Sif X1 X3

§2l Vs X2

Sy
§2

8§y

Y2

X3

82

Y1
X3

Then type 3 B-fuzzy grammar 3-BG = (Vy, Vy, 0, P,J, u, B) is defined as
follows. Vy = {{8:1),<s20} Vo = £ = {a, b}, 6 = {s,), and the produc-

tions are
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1) (50 = alsd xy, 7) 520 = bSsy> %y
2) (51> = as2) X3, 8) (520 = BSs3> x5
3) (50— s> ya 9) (s>~ a X3
4) sy = b4s2D  y1s 10) <sy> = b Y1
5) (520 = alsd ¥s, 11) s> —>a X2
6) (52> = alsy) X3, 12) {s3> = b X3.

THEOREM 3.4 Type 3 A-B-fuzzy language L(3-BG, X) with the threshold A
generated by type 3 B-fuzzy grammar 3-BG is a regular language.
Proof 1t is obvious from Theorem 3.2 and 3.3.

4. CLOSURE PROPERTIES OF B-FUZZY LANGUAGES

In this chapter we shall show that a family of B-fuzzy languages by type 3
B-fuzzy grammars is closed under the operations of union, intersection,
concatenation and Kleene closure in the fuzzy sense, but is not closed under
the complement. It is, however, shown that the complement of B-fuzzy
language by type 3 B-fuzzy grammar can be characterized by type 3 AvBG.

Moreover, a family of B-fuzzy languages by type 2 B-fuzzy grammars is
closed under the union, concatenation, Kleene closure in the fuzzy sense. But
this family is not closed under the intersection and complement.

4.1. Closure properties of type 3 B-fuzzy languages
At first we shall consider type 3 B-fuzzy languages.
THEOREM 4.1 For two type 3 B-fuzzy grammars 3-BG'Y and 3-BG®, let

L(3-BGV) and L(3-BG®) be the B-fuzzy languages by 3-BG*) and 3-BG?),
respectively. Then, in the fuzzy sense, there exists a 3-BG such that

L(3-BG) = L(3-BG'V) U L(3-BG®). (53)

Proof Let 3-BG") and 3-BG® be as follows.
3.BG = (P{V, VD, PO, §,, T, 1D, B),
3-BGD, = (V{P, Vi, P®, §3,7D, i, B),

where it is assumed that V{P n VP = ¢ and J A TP = ¢. Now consider
a 3-BG, that is,

3.BG = (V)vs VT: P, S, J, H, B)’
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where Vy, V¢, P, J, and p are given as follows.

Vy = VP urvPous),
VT = Vgl"l) o V(Tz),

P=PYVyPDyP UP,,
T=JDGJO G T 0Ty,

where S nJ® A J, nJ,; = ¢ is assumed.
Py, Jp, P, and Jyp are defined as follows.

[7]: For each initial rule (*r) S§; — w in P), we construct a new initial rule of
P such as (r') S — w, where r’ is a different new label, and S is a new initial
symbol in 3-BG. Let P, and J; be the set of all new initial rules obtained above
and the set of labels corresponding to these new rules, respectively. Formally,

P={r)S->w|(r)S, > wePP},
Jr={']|@)S>weP]}.

[11]: We can get P;; and Jy; for the initial rules in P® in a similar way as [1].
That is,

Pu={rNS->w|(r)S, > weP?}
Jp={" [ (r") S —>wePy}.
Finally, B-fuzzy function u is defined by the following.
wr) = pr)...r'ely,
u(r”) = pA(r)...r" ey,
u(r) = p @) ... reJ®,
wr) = pyd(@) ... reJ®,
Example 41 Let VP, VP, and P of 3-BG? be as follows. V(D =
{S;,4}, V{9 = {a, b}, and _
(ry) | Sy —ad I,
(r2) A-08 x4,
(r3) A-b Y2
The Boolean lattice B is in Figure 2. Then B-fuzzy language by 3-BG'® is
L(3-BG'") = {(ab, y2)} v {((@b)", x,) | n = 2}.
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On the other hand, V), V¥, and P® of 3-BG® are as follows. V{? =
{S,, B}, V¥ = {a, b, c}, and

(p)S;—aB I

(p2) B = bS; x;
(p3)B -0y
(pa) S2>¢  y3

PP =

Then L(3-BG®) is
L(3-BG®) = {(ab, y,)} v {((@b)", x,) | n = 2}
U {(@b)"c, x2) | n 2 1} L {(c, ¥3)}-
Therefore
L(3-BG™V) U L(3-BG®) = {(ab, D} v {((@b)", y3) | n = 2}
U {(@b)"c, x,) | n 2 1} U {(c, ¥3)}-

By the way, 3-BG constructed from 3-BG™") and 3-BG'® by Theorem 4.1is as
follows. Vy = {S, S1, S3, 4, B}, V1 = {a, b, c}, and P is given as

(r) S—-ad I
(r) Sy—ad I
r) A4A-bS; x
(r3) A-b y
(p) S=—-aB I
(ps) S-c
(py) Sp—aB I
(r2) B-DbS; x;
(ps) B~b B4
(ps) S2—c V3.
For the string ab, two fuzzy derivation chains are possible, that is,

I y2

S———ad - ab,

I y1

_S — aB ——— ab.
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Therefore, the grade of generation of the string ab is given as

Bapc@) =T Ap)vIAYy)=psvy =1L
Similarly, for the string (ab)", n = 2, we have

I x1 I x1 y2

S— > A ——— abS; —— abad ——— ... ——— (ab)",

I x2 I X2

»
— aB — ab$, — abaB > ... — (ab)".

S

Therefore, we have

H3.pc((@D)") = xy vV X; = y;.
For the string (ab)"c,n 2 1,

I x2 I x2 y3

S —— aB-—— abS, —— abaB—— ... —= (ab)"S, —— (ab)"c
Therefore, 3. gc((ab)’c) = I A x3 A Y3 = X;.
Moreover, we have p;_ps(c) = y3. Therefore, L(3-BG) is
L(3-BG) = {(ab, D} U {(@b)" y3) |n 2 2}
v {(@)e, x5) | n 2 1} U {(c, y3)}
= L(3-BGV) u L(3-BG®).
THEOREM 4.2 For two B-fuzzy languages L(3-BG'V) and L(3-BG®) by
3-BG™) and 3-BG™®, respectively, there exists 3-BG such that
L(3-BG) = L(3-BG") n L(3-BG'D). (54
Proof For two 3-BG'V and 3-BG®), that is,
3-BGV = (V{V, Vi, PD, 8, , TN, y(V, B),
3-BG® = (V{P, Vi, PP, 8,7,y B),
let us define 3-BG as follows.
3-BG = (Vy, V1, P, S, J, 1, B).

At first, the rules in P are given by the following.

[I]: For two non-terminal rules in P and P® such that the terminal
symbols of the right hand side of these two rules are equal, say, ae V.
That is, for

(r) A, > ad,e PV and (p) By - aB, PP,
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let a new non-terminal rule in P be defined as follows.
(r,p) <Ay, B> —— ald,, By).
[Z1]: For the two terminal rules in P” and P® such as
(r) A, > aeP?® and (p) B, »aeP?,
with the same terminal symbol, define a new terminal rule in P as follows
(r,p) {41, By — a.

Let P, be the set of new rules obtained in [/] and [/7] and J, be the set of
labels corresponding to these new rules. Then P and J in 3-BG are given as

P= v P, and J= v J,.

aeVr aeV

Moreover, Vy is the set of pairs (4, B{) obtained in [1] and [II], and
S = {8, S,>. Clearly we have

Vyc VOx V@ and J<JOxJ®,
Finally, B-fuzzy function y is defined by
p(r, p) = pO(r) A 1(p)
for each (r, p) in J.
TueoREM 4.3 For the two fuzzy languages L(3-BG'V) and L(3-BG'®) by

3-BGV and 3-BG®, respectively, there exists 3-BG which realizes the con-
catenation of L(3-BG) and L(3-BG®) (see (32)).

L(3-BG) = L(3-BG'V)  L(3-BGD). (55)
Proof Let
3-BGY = (V{P, VD, P, 8, 0D, u™, B),
3-BG® = (V{P, VP, PP, 8,7, u?, B),
where V" n VP = ¢ and S A JP = ¢.
We construct a new 3-BG,
3-BG = (Vy, V¢, P, S, J, y1, B),
where S = Sy, Vy = VR 0 VP, Vp = VP VP, and J = JD 0JD,

We introduce the following notations in order to get P. Let P and P{ be
the sets of non-terminal rules and terminal rules, respectively, in PO =1 2.
And let J@ and J{? be the sets of the labels corresponding to the rules in
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P® and P, respectively. Then, clearly, we have P® = PO U PO and J® =
JD LI for each i e {1, 2}.

Now we shall obtain the rules of 3-BG.

For each terminal rule (r) 4 — ain P{" and the initial symbol S, of 3-BG®,
we construct a new rule (r) 4 — a5,, where the label is not changed. Let P’
be the set of such rules, then P of 3-BG is given as

P=PVupP uPP,
The B-fuzzy function u of 3-BG is as follows.
@) .o redy(=J)
pO@E) . re®P
p V@) ... red’
A2 ... reJ®

wr) =

where Jg is the set of labels of initial rules S — w of P,

THEOREM 4.4 For a fuzzy language L(3-BG) by 3-BG, there exists 3-BG'
which realizes Kleene closure (see (34)).

L(3-BG’) = L(3-BG)*. (56)

Proof For the 3-BG = (Vy, V4, P, S,J, u, B), let 3-BG' be 3-BG' =
Vi, Ve, P, S, T, 1, B), where Vi = {S'} U Vy. P’ is obtained from [7],
[IT] and [IIT] denoted later. It is assumed that the mappings ¢,, ¢,, and ¢,
in [I1, [IT], and [IIT], respectively, are all one to one mappings from labels to
new labels, and the obtained new labels are all different from each other.

[I]: For each initial rule (r) S — w in P, we construct a new initial rule
(t,(r)S’ —» win P’. Let P; be the set of such new initial rules and J; be the
set of the labels corresponding to these initial rules. Formally,

Py = {(t,(r)S - w ] rNS->weP, rels},
Jr = {t1(")}-

[IT]: For each terminal initial rule () S — a in P, define a new rule (¢,(r))
S’ = aS. Then, let

Py ={(t)S' > aS|()S > aP,rels},

Jir = {t2(n)}-
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[ZIT]: For each terminal rule () A — a in P, construct a new rule (#5(r)) 4 -
aS in P’ and let

Py = {(ts(r) A—>aS|(r)A > acP},
Jur = {t3(1)}-
Then P’ and J' in 3-BG are given from [], [I], and [IIT] as follows.
P =PUP,UP,UPU{(po) S — e},
I =JuJp Iy g v {po}

where all labels in J’ are different from each other.

It is noted that in any derivation we start with an initial rule in P; or Py,
(not in P, P,;;), and then rules in P or Py, are used throughout in the deriva-
tion.

Finally we shall obtain B-fuzzy function.

VOB ERAGLY/

u@r)...p = ta(r) ety
w(p) = J ur)...p = t3(r) €
wp) ...pel

L I...p=po.

THEOREM 4.5 Type 3 B-fuzzy languages are not closed under the complement.

Proof In general we have that L(BG, A,) 2 L(BG, A,) if and only if
Ay £ A, for any B-fuzzy grammar BG. That is, L(BG, -) is non-increasing.
In contradication to this, the complement of L(BG, -) is non-decreasing,
that is, L(BG, A;) 2 L(BG, ,) iff A; = 4,.

Now we shall show that the complement of type 3 B-fuzzy language can
be defined by type 3-AvBG (43).

THEOREM 4.6 For a type 3 B-fuzzy language I(3-BG) by 3-BG there exists a
AvBG which realizes the complement of L(3-BG), that is,

L(3-AvBG) = L(3-BG). (57

Proof For a 3-BG = (Vy, Vy, P, S,J, i, B), let 3-AvBG be (Vy, V7,
P, S, J, u', B). It should be noted that the grade ,,ps(x) of generation of a
string x in V% is defined from (43) by changing A with v in (42). Moreover,
Vn» Vr, P, S, J, and B of 3-AvBG are assumed to be the same as that of
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3-BG. B-fuzzy function p'(r) of 3-AvBG is obtained as follows. For each r
in J,

W) = pir). (58)

Then we can easily prove the following property using De Morgan’s law, that
1s,

Ay VA2V oo Vil = v g Az A A iyl
where y; and ji, are in Boolean lattice B and Ji; is the complement of ;.
Therefore we have i,y pe(*) = pp(x), x€ V7.

4.2, Closure properties of type 2 B-fuzzy languages

In this section we shall consider the closure properties of type 2 (or context-
free) B-fuzzy languages. It is shown that the family of type 2 B-fuzzy languages
by type 2 B-fuzzy grammars is closed under the union, concatenation, and
Kleene closure in the fuzzy sense. But this family is not closed under the
intersection and complement.

TueOREM 4.7 For two type 2 B-fuzzy grammars 2-BG™") and 2-BG®, let
L(2-BG™) and L(2-BG'?) be the type 2 B-fuzzy languages defined by 2-BG'"
and 2-BG™®, respectively. Then, in the fuzzy sense, there exists a 2-BG such as

L(2-BG) = L(2-BG™V) L L(2-BG?). (59)

Proof Let 2-BG™ and 2-BG® be as follows.
2-BGV = (Y, VP, PM, 8, 7D, ', B)
2-BG?® == (V§v2)’ V(,I?)’ p(Z)’ S;, J(Z)’ #(2), B)

where it is assumed that V{? A VP = ¢ and JP nJP = ¢. 2-BG is given
as

2‘BG = (VN, VT’ .P, S, J, Il, B).

Then Vy = VP u ¥ U {S}, where S is an initial symbol of 2-BG and is
notin ¥ U V. And ¥y = VP U V. The set of productions P of 2-BG
is obtained as

P=POUPDy{k)S—S,,(m)S—> S,}.

The labels sets {k, m},J™, and J® are mutually disjoint and the label set J
of 2-BG is as follows.

J=JVuI®y {k,m}.
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Finally, the fuzzy function p of 2-BG is
D). reJ®
wr)= S u3dr)...reJ®
I..refk,m}

where I is the greatest element of Boolean lattice B.

THEOREM 4.8 Type 2 B-fuzzy languages by type 2 B-fuzzy grammars are not
closed under the intersection.

Proof Let the Boolean lattice B be {0, I} which consists of two elements
0 and I, then type 2 B-fuzzy grammars become ordinary type 2 grammars.
It is well-known that type 2 languages by type 2 grammars are not closed
under the intersection. Therefore the theorem holds.

THEOREM 4.9 Type 2 B-fuzzy languages by type 2 B-fuzzy grammars are not
closed under the complement.

Proof Tt is obvious from the theorem 4.5.

THEOREM 4.10 Given two type 2 B-fuzzy grammars 2-BG" and 2-BG®,
then there exists a 2-BG which satisfies the concatenation of L(2-BG")) and
L(2-BG™Y), that is,

L(2-BG) = L(2-BG™) « L(2-BG?). (60)
Proof Let 2-BG™ and 2-BG™® be
2-BGD = (WD, D, PO, 8, JD, 40, B)
2-BGP = (VP, VP, D, §,, I, 4@, B)
where V¥ n V) = ¢ and 'V nJ@ = ¢. Then 2-BG is given as
2-BG = (Vy, V1, P, S, J, u, B),

where Vy = VP U VP U {S}, S¢ VP U VP, And ¥y = VP U V. The
productions P of 2-BG is

P=PDyPDy{k)S—> SS,}
and label set J is J 0 J® U {k}. The fuzzy function is defined as
) ... reJ®
ur) =< u @) ...reJ®
I..r=k
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where I is the greatest element of B.

THEOREM 4.11  Given a type 2 B-fuzzy grammar 2-BG, there is a type 2 B-
Juzzy grammar 2-BG' which realizes Kleene closure such as

L(2-BG") = L(2-BG)*. (61)

Proof Let2-BGbe(Vy, Vy, P, S,J, u, B), then 2-BG' is given as 2-BG’ =
Vi, Vp, P, 8", J, ', B), where Vy=Vyu{S},SeVy. P =Pu
{(k) S" - 58", (m) 8" » &}. J' = J U {k, m}. The fuzzy function p' is

wr)...red
pr) =
I...reik,m}.

5. CONCLUSIONS

We have defined fuzzy grammars on Boolean lattices (B-fuzzy grammars)
and studied several fundamental properties of B-fuzzy languages character-
ized by B-fuzzy grammars. It is founded that the generative power of B-fuzzy
grammars can be enhanced although fuzzy grammars cannot enhance the
generative power, and the basic concepts and results in the formal languages
can be extended to B-fuzzy languages. The proofs, however, are generally
somewhat longer since they involve the membership functions on Boolean
lattice rather than on {0, 1}.

We hope that many interesting formal grammars on the particular algebras
such as distributive lattice, lattice ordered semigroup, ring, and, more
closely, the representative Boolean lattice as given in Figure 1 will be formu-
lated and a number of interesting results will be obtained from these grammars.
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