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This paper is concerned with the class of web gremmars introduced by Pfaltz,
Rosenfeld and Montanari, In this paper, we show that context-sensitive web grammar
cannot erase arcs, and monotone context-sensitive web grammar can erase arcs but
cannot erase any vertices and they satisfy the condition |« | < | B | in the rules « = §.
Then some hierarchical results hold, when grammars are normal and nonnormal,
Normal grammars have rules that each vertex to be rewritten has exactly ane image in
the right member of the rule; nonnormal ones have rules that some vertices have two
more images. Also, it is shown that there exists a complete grammar which generates
some types of Bulertan graphs, line graphs and 3-connected graphs.

INTRODUCTION

~ There exists a variety of techniques whereby pictures may be interpreted or
described in general ways. For example, Shaw’s “formal picture description scheme™
[1] and Dacey’s {2] method are such techniques. One of the most recent and most
interesting devices in pictute proccssing has been introduced by Pfaltz and Rosenfeld [3]
and Montanari [4]. These authars extend the concept of the one-dimensional grammars
to graph theory, and apply the rewriting rule to general labeled graphs (called webs) in
a natural way. But it is pointed out by Montanari thet the embedding of the rewritten
webs is the special problem associated with web grammars; in his paper, all the
grammars are normal. In graph theory, however, it is often necessary to divide one
vertex into two or more vertices to construct desired graph, as for examples, all
complete graphs or all 3-connected graphs. In this paper, we prescribe that the
embedding part satisfies the condition such that if there exists an image of a vertex
of the left member of a rule in the right member, all vertices which have been adjacent
to the vertex must be adjacent to the image after the application of the rule. And we
consider grammars which have normal embedding and nonnormal embedding.

Now main results are summarized: First, we give the hierachy of the classes of webs
generated by normal grammars and nonnormal grammars, tespectively, and note that
some hierachical results do not always hold good between classes of webs generated
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by normal context-free web grammars and those by nonnormal linear web grammars,
Second, the classes of webs indirectly generated by normal context-sensitive web
grammars properly contain the classes of webs generated by normal ones.
Third, it is.shown that there exists a complete web grammar which generates some
types of Eulerian graphs and line graphs.

WrB GRAMMARS

In this section, web grammars are introduced. Our definition is similar to that of
Montanari, and Pfaltz and Rosenfeld,

DermviTion 2.1, Let ¥ be a finite set. A web WV over V' is a triple (Ny-, Fiyr , Aw),

where

(I) Ny: a sct of vertices;
(2) Fy: Ny — V, i.e., labeling function;
(3) A, asetof binary relation on Ny and its elements are called arcs.

DerniTION 2.2, A web grammar G is a triple (V, I, R) where

{1) V is the vocabulary, and it consists of two disjoint parts, a nonterminal
vocabulary ¥/, and a terminal vocabulary Vi, (Vy 7 ¢, Vi # 8);

(2) I is a finite sct of initial webs over V;

(3) R is a finite set of rewriting rules and its element, which is called rule, 1s
formally described as a quadruple («, C, 8, E), where «, B are webs, and C is a logical
function called a contextual condition of the rule and prescribes the condition which
web o and its adjacent vertices must satisfy. The logical functions E specify the
embedding of 8 in W — a. We prescribe that E has a function that all vertices adjacent
to the vertcx to be rewritten in the host web must be adjacent to the image of that
vertex; for a rule (e, C, B, E) of a given web grammar, if the image of P in N, is the set
{01,002, @} (n = 1), then for any vertex S'in Ny _, (W is a host web) if (S, P) e Ay
then (S, 0,) € Ay_osp, and also (S, P) ¢ A, then (S, Q) ¢ Ay—ousfor | < i < .

Dermnrrion 2.3, Given a web W = (Ng., Fy, Ay ) over V, the web § = (N, 5, 45)
over the same V is called a subweb of W if
(1) N TNy,
(2) If X&Ns, Fs(X) == Fy(X); .
(3) For I, DeNg, if (I,O)ed;, (P,O)edy and if (P,0)¢ Ag, then
PO ¢ 4w . | .
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DrrmntTION 2.4, Givenaweb W, the rule{«, C, §, E)is applicgblc to the web Wif

({) aisasubwebof W;
(2) Cistrue,

DermvrtioN 2.5. The language L generated by a grammar & consists of those
webs on ¥V that can be derived from the initial webs by successively applying rules,

DeFmNITION 2.6. In a given web grammar G = (V, 1, R) for any rewriting rules
(¢, C, B, E}s '

(a) If Cis always true and |« | << | 8] and N, & Nj, then the web grammar
is called monotone context-sensitive web grammar (meawg);

(b) In case (a), let a vertex P have a label over Vy in the web o then the given
web grammar is called context-sensitive web grammar (cswg):

(@) if XeN, — [P}, then F,(X) = F,(X);

() if for X, YeN,, (X,Y)ed,, then (X', Y)ed; where X", Y’ are
images of X and YV, respectively.

In case (a), if the contextual condition C is not always true, then, meswg is called
meswg with applicability condition.

(¢) In case (b), if the web « of each rule consists of only one vertex P, then the
web grammar is called context-free web grammar (cfwg). Especially, if the webs in the
initial webs and the right member of each rule consists of the web which has at most
one vertex over V', the web grammar is called lincar web grammar (lwg).

For example, the language generated by cawg is denoted as cawL and the family of
cswl. is written as cswL,

Note that the context-sensitive web grammars defined by Montanari permit the
insertion of vertices on an arc; but our context-sensitive web grammars (cswg) cannot
do such an operation, fulfilled by our monotone context-sensitive web grammar
{mcswg). Our mcswg is considered to concide with Montanari’s monotone web
grammar, except for the existence of images (Montanari’s definition does not imply the
existence of images of rewritten vertex, but all examples shown in his paper are
represented by our meswg).

Dermnrrion 2.7. A rule (x, C, B, £) of a given web grammar is called normal if
for any vertex Q in N, there cxists exactly one vertex which is the image Q in N, . If
the number of images is more than or equal to 2, the rule is called nonnormal. And if
all the rules of a web grammar G are normal (nonnormal), the web grammar is called
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normal (nonnormal), 2nd normal cswg is denoted as ncswg and nonnormal cswg is
denoted as ancswg.

DeriniTion 2.8. A web language L is indirectly generated by a web grammar G, if

(a) The vocabulary ¥}, is a proper subset of the terminal vocabulary Vi of G
{(b) The language consists of just the subwebs of the terminal webs generated by
G whase vertices are labeled with symbols belonging ta V;

(¢) Inany web generated by G, in which N vertices are labeled with symbels of
V., the number of vertices labeled with symbols of ¥ — ¥V cannot exceed a fixed
value M, .

CrLASSES OF WER GRAMMARS

In this section, the classes of webs generated by some types of web grammars are
discussed.

TuroreM 1, Given any web grammar G, a web grammar H equivalent to G can
always be found, such that the initiol web is a one-point web.

Proof. Let G = (Ve Is, Rg), H = (Vg , Iy, Ry). If we construct
Ve=Ve{S8, Iy={§} and Ry=ReuU{§=W|Wielg,

then the equivalence between them is trivial. Q.E.D.

Lemma 2. There exists a ncfwl evhich does not belong to niwL,

Proof. From the definition of nlwg, it is clear that nlwg cannot generate exactly all
trees; that is, as the right member of any rules has at most one nonterminal symbol, the
web derived from an initial web cannot expand to arbitrary directions. The ncfwg of
Fig. 1 is equivalent to the grammar of Pfaltz and Rosenfeld (Theorem 1) except for
directedness. Therefore, the results are evident. Q.E.D.

Some connected graphs can be disconnected by the removal of a single vertex,
called a cutpoint, If a connected graph has a cutpoint, it is called separable; otherwise
it is called nonsepatable. In general, a block of a graph is a maximal nonseparable
subgraph of the graph, but a graph G itself is called a block if it is nonseparable,

Lemma 3. The blocks of nofwl Ly generated by ncfwg whose initial webs consist of
anly one-point webs consist of only webs 8 of the rules of G and the blocks of B.
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F1a. 1. This ncfwg generates a set of all trees. The image of S of rule (1) is a leftmost vertex
of the right member of the rule. For a nefwg (nlwg), the image of the left member of rules is
denoted by a dot,

Proof. Lettheright member B of any 1 rules be connected webs. On a derivation of
a web Win Lg, let {§} 5 W' > W* 5 W be the derivation chain. Now consider
that one vertex « in the web W” are rewritten to web /" by the application of a rule
« = B, Here let an image of vertex o be oy, i.e., oy = im{a). It is very easy to see
that the web W* — {a} is partitioned into at least two parts, W' — {o} and W* — W,
and thatforue W' — wandve W* — W', allu — v paths pass the vertex a, in the web
W*, Therefore oy is a cutpoint. If the web 1’ is a block, then W' is a block of 1/?, and
if the web £ 1s a block, then 8 is a block of W”; otherwise, block of £ is a block of ",
Similar considerations are repeated with respect to the web W’. Therefore the proof
is dane. Q.E.D.

A graph is called acyclic if it has no cycles (cycle is often called circuit and its
definition is well known}. If a connected graph is acyclic, it is called a tree.

COROLLARY 4. If the right member B of any rules of a given ncfwg G are acyclic, then
any member of ncefwL L s also acyclic.

Lemma 5. It is not always true that the blocks of ancfwL. Lg consist of only web
B of the rules of G and the blocks of .

Proof. Consider an ancfwg G of Fig. 2. On a derivation of a web W in L from the
injtial web, let rule (2} be applied to a web

W' = {‘i'._...‘g__‘f}
derived from {8}, Since rule (2) is a nonnormal rule and an image of the left member 4
of rule (2) is two vertex A of the right member of it, all vertices which have been
adjacent to 4 in the web I must be also adjacent to two vertices A4 after the application
of rule (2). Therefore the derivation chain is deseribed as

S} = W’a. /A\ 3 w.
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As the derivation process of W from W* (abave a four-point web) preserves the
adjacency of any points in a derived web, web W/* is a subweb of the web W. Clearly
the web W is itself a block and it is not isomorphic to any £ and its blocks. Q.E.D.

nos{saahe wefe), o)

LY a A a
™

1 = e

A oA
2) & = £ - ¢ Imoge of 4 is two vertices labaled
: . with symbol 4, i.e.,Im (4) ={.§',.5!}

(3] f == el

Fio, 2, This ancfwg generates a set of webs that cannot be generated by sny ncfwg. Em-
bedding of rule (2) specifics that any vertices adjacent to A-vertex in the host web are adjacent
to both the vertices labeled with symbol 4 in the right member of the rule. (Hereafter, the
embedding part of nonnormal grammars is denoted as in thia figure.)

TreoreM 6. ncfwl € ancfwl..

Proof. The relation ncfwL C ancfwL is a direct consequence of the definition.
Now we show that there exists an ancfwL which ncfwg 1s unable to generate. According
to L.emma 3, the number of types of blocks of ancfwL is not always finite, but according
to Lemma 3, one of ncfwL is always finite. It must be concluded that if a language
whose number of types of blocks is infinite can be generated by ncfwg, its set of rules
must be infinite, but it contradicts with the definition of the grammar. Q.E.D.

CoroLLary 7. alwL CanlwL.

LemMa 8. An ncswy of Fig. 3 generates exactly all connected nonseparable webs.

Proof. Only nonseparable webs. As only nonterminal symbol B is converted into
the terminal symbol ¢ by the application of rule (16), vertices labeled with nonterminal
symbols 4, C, D must be rewritten to B-vertex. If rule (4) is applied to the web derived
from the initial web by the application of rules (2) and (3), a circuit is generated. Unless
rule (4) is applied to the host web, rule {5) is not applicable to the web. And also if
rule (8) is applied to the web over symbol B, rules (10)-(13) or (14) and (15) must
always be applied to the web derived from that web by application of rules (9) and (10).
To terminate the derivation, if rule (4) is used, rule (5) or (6) must also be used; and
if rule (8) is used, then rules (10)-(13) or (14) and {15) must be applicd. For the cases
deseribed above, the derivation is able to terminate.

All nonseparable webs. A trivial nonseparable web is generated by the application of
rule (1). Whiteney has shown that it is possible to build up any connected nonseparable
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Fic. 3. ‘This ncswg generates a set of all nonseparable webs, The image of the left member
of rules except for one-point web is written at the place corresponding to the rewritten vertex,
Far example, C-vertex and A4-vertex correspond to B-vertex and A-.vertex, respectively in

rule (4),

webs containing more than two arcs by starting with 2 circuit and adding to it ares or
chains of arce. After the recursive application of rule (3), by the application of rules (4)
and (5) or {6) in order, arbitrary circuits can be constructed. The addition of an arc
is performed by applying rule (7), and the addition of a chain of any length can be
obtained by first application of rule (8) and the repetitive application of rule (9) and last
application of rules (10}-(13) or (14) and (15). As described before, if any derivation
from the initial web terminates, the above procedure can be always done. Q.E.D.

TueoreM 9. ncfwL € neswL.

“Proof. This theorem follows directly from Lemma 3 and 8.

CoroLLARY 10. anlwL G ancfwL.

Proof. Let SK-graph be a separable graph whose blocks consist of only cmﬁplete

v {sa.8}. ve{e}. 1={%]

A
A
4y 5§ — 4 8 2 tzlﬁ.—::{ m 4. {4, 4}
A
30 8 —= & 14 414 — 8

{5)

Froc. 4. This ancfwg generates 2 set of all SK-webe,



44 ABE, MIZUMOTO, TOYODA, AND TANAEA

blocks except as one point graph. It is clear that ancfwg of Fig. 4 generates all
SK-graphs. Here, note that a vertex labeled with a symbol (for example, B-vertex in
the figure) belonging to ¥y can be a cutpoint of an arbitrary number of complete
blocks. Since any webs derived by anlwg can have at most one vertex to be rewritten,
it i clear that any anlwg cannot generate a set of all SK-graphs, but generate only a
subsct of them. Q.E.D.

CoROLLARY 11. There exists anlwLs which is not a member of nefwL.

Proof. Let L; be a set of all complete webs K, , where P is a number of vertices.
It is evident that an anlwg of Fig. 5 generates any members of Lg , that is, 2 new vertex

N O NS O IR

A a '
. = Im (f)x{ ﬁ' ‘f}

A

§ =

Tic. 5. This anlwg generates a set of all complete webs Ke.

added to 2 web derived from an initial web should be adjacent to every vertex of the

web.

Now we show that L; cannot be generated by any ncfwg. From Lemma 3, every
vertex rewritten by the application of rule (except that the right member f# is a one-
point web) becomes a cutpoint of more than or equal to two blocks. A ncfwg which
should generate Lg , therefore, must have only a set of intial webs consisting of only
complete webs and a set of rules of which types are §' = K, (n 2 1 and their vertices
must be labeled with terminal symbol). Then the set of initial webs 7 or the set of
rules R are not finite. Q.ED.

CoroLLARY 12. anlwl % ncfwl..

TuroreM 13. A set of webs Lg of Fig. 6 is not @ ncfwL.

Proof. Assume that nefwg G generates Ly; of Fig. 6. From Lemma 3, blocks of L
consist of only web g of a rule of the given web grammar G. As kinds of blecks of the
given language are

= -
b e ) .+'14::| ete.
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Fi1¢. 6. ‘This set of webs is not & nefwl., The web langunge corresponding to {a™ | n > 1}
in the 1-dimensionn] grammar is ncswl.. -

the right member of any rule of the grammar must be isomorphic to one of the
above webs. For example, suppose that the right member of the rules consists
of only minimal block, Le., » » From the consideration of the combination of
rewritten vertex and its image, one of the possible grammars expected to generate L
must be the grammar of Fig. 6a. It is easy to see that this grammar cannot control the

W dsaieidhe ne (3} oo (d)
i — &0 d a g ¢
08=Pg—;—.3 5="g—h—£
5 — 1 E e g

Fie. 6a. One of the possible nefwg which are considered to generate a set of all webs shown
in Fig, 6. '

number of vertices on two different branches; that is, this grammar generates not
only L but also a set of webs, branches of which have different numbers of vertices.
For other cases, similar discussions can be considered. Q.E.D.

Comparing ncfwg with a context-free string grammar, we can sce that the latter is
strong in generation because any sequences can be inserted into strings. Thus the web
language which corresponds to cfL{a"d" | n = 1} is not ncfwL. The language of
Theorem 13 can be constructed by ncswg, but we abbreviate the details here,

The degree of a vertex P in a graph (web) G, denoted deg P, is the number of arcs
incident with P,

'THEOREM 14. An ncswg cannot generate a set of all separable webs.

Proof. Assume that the number of vertices on 2 block in a web derived from the
initial web of a given neswg is #, and that » is sufficiently large in comparison with the
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cardinality of the vocabulary, denoted as | ¥ |. Consider the web of all vertices which
are cutpoints of other blocks. To obtain such a web, every vertex on that block should
be rewritten to a cutpoint of a block B; by the application of a rule 4, = C,B,, where
A, is a vertex which is to be rewritten and C, is the image of 4; and is a cutpoint of
block B; . Now consider the case that one vertex of the web is a cutpoint of 7 blocks,
By, Byi s Bipti ey Bui, Where m is sufficiently large in comparison with | ¥ |[.
Then there exist many points labeled with similar symbels in the blocks By and
B.: (k # j} without limit, because | V| must be finite. As arbitrary blocks are able to be
constructed by that grammar, the grammar should have a rule which adds any vertices,
arcs and chain of arcs to the block. Since these rules are, however, applicable to
vertices of both blocks Bj; and By, if they are applied to the vertex of By, and By;,
it happens that two different blocks By, and By, are rewritten as one block; that is,
there exists a case where one vertex of a given block cannot be a cutpoint of an arbitrary
number of other blocks (see Fig. 7a), Also there exist many vertices labeled with

-
==
by the
~ application of = g Y

~o . B=n—8 0"

F16. 7a. ‘'The process that several blocké are converted into one block. The line written in
blod strekes indicates the arc added to two different blocke,

similar symbols in the given web without any limitation, because # is sufficently large.
Let such two vettices be X, ¥ and let X be a cutpoint of any number of blocks
By, By s By oo, and let ¥ be a cutpoint of blocks B,', By',... , By'see. - Then, there
exist many points labeled with similar symbols on the different blocks without any
limitation. In order to construct all possible blocks, it is necessary for the grammar to
have a rule which adds an arc hetween a vertex X(¥) and a vertex P\(P,) on the
block Bi(B,"). A rule which is applicable to vertices X and P, is also applicable to
vertices ¥ and P, and to vertices X, P’ (see Fig. 7b). Then it is easy to sce that two
different blocks—the given block and block B,—are rewritten to ene block.
" In general, if the same idea is applied to the vertices on the given block, we can
conclude that it happens that nonseparable webs are generated by neswg as there
exists a case where the generated webs themselves become a block.

To gencrate only separable webs, it is necessary to attach a marked vertex to each
block; this marked vertex must be adjacent to all vertices on the same block (sce
Fig. 7c). If the addition of arcs is done by referring to the marked vertex, no arcs are
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i
Pﬂ) “\\

Fic. Tb. The case where new blocks and ariginal block are converted into one block. The
symbols Py and P’ are identical end so are the symbols X and Y.

added between two vertices on the different blocks, but this marked vertex is a special
vertex, that is, it is adjacent to all vertices on the same block. Since any neswg cannot
erase any arcs, this marked vertex cannot be converted into a vertex of any possible
blocks. All separable webs, therefore, cannot be generated by this method. Q.E.D.

F1G. 7c. An example of 2 web which has a marked vertex on each block ¢xcept one-are
block. A marked vertex is shown as a vertex labeled with C.

TuroreMm 15. neswl § I-ncswl.

Proof. Let Gy = (Vy,];, Ry) be a ncswg which generates ncswL Lg , and
Vy=Vr W Vy Ve OVy =@ Vr # 2, Vy, 7 ©. We construct the neswg G,
which indirectly generates Ly . Let Gy = (Vy, I, Ry).

(1) A vocabulary of G, can be obtained from one of Gy by the following proce-
dure: New vocabulary V(Ve\ Vy = ) is added to onea of Gy .And Vy =V U Vg,
VNI = VN]. ) Vg = VT‘ U VN' .
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(2) For the inittal webs, I, = 1,,
(3) A set of rules can be obtained from one of G, by the following procedure:

For any rules (o, C, 8, E) in R, , a web o over Vg is added to both o and 2 so that the
rule is normal (this procedure can always be carried out).

If we specify the terminal vocaburary V7 as V| it is easy to see that the web over
Vr, generated by G, is isomorphic to the web of Lg, « (This procedure is the immediate
consequence of Montanari.)

Now, we show that there exists an example that is never able to be generated by any
ncswg. Let us consider the set of all separable webs. As shown in Theorem 14, every
ncswg cannot generate only such webs, From Lemma 8, ncswg, however, can generate
a set of all nonseparable webs. And as shown in the Fig. 7c of Theorem 14, neswg
which attaches a marked vertex to each block can generate only separable webs (note
that the concept of indirect generation is necessary), The proof of this theorem,
therefore, is clear from these facts. Q.E.D.

If we use nmeswg to generate a set of all separable webs, it seems possible that a
marked vertex is converted into a vertex of arbitrary block by erasing arcs from the
marked vertex, We show that this method gives us a construction of all separable
wcbs by nmeswg,

First, another form of Whitney’s theorems describing the method of the construction
of all nonseparable graphs is shown, and a nmcswg generating all separable webs is
also shown.

A nullity of a connected graph having V vertices and F arcs is given by the equation

N=E—V+1

Consider graphs G, and G, having disjoint vertex sets Ny and N, and arc sets Ay and
A, , respectively, Their union G = GLU G, has N =N, UN,and 4 = A4, U A4,.
Their join is denoted G, 4 G, and consists of G, U G and all arcs joining IV; with NV, .

In order to give another form of Whitney’s results, the “wheel” invented by
W._T. Tuttc is needed. Forn 2= 4, the wheel I/, is defined to be the graph K| 4- C,_,,
and this graph is clearly nonseparable. To generate all separable webs, a marked vertex
attached to each block is necessary. Let us consider the center of the wheel, which is a
vertex K, and is denoted hereafter as C-vertex as shown in Fig, 7c, as a marked
vertex.

Now the serise of theorems on the connected nonseparable graphs must be brought
to mind;

Tusorum 1. A nonseparable graph G containing at least iwo arcs contains no loops
and is of nullity > 0. each vertex is on at least two ares.

TuroreM I1. A nonseparable praph of nuility 1 i5 a circuit C, (n = 3).
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. Tueorem 111, If G is a nonseparable grapk of nullity N > 1, we can remove an arc
or a chain of arcs from G, leaving a nonseparable graph &' of nullity N — 1,

‘Tueorem IV. Any nonseparable graph containing at least two arcs can be build up
by talking first a circuit, then adding successively aves or a chain of ares, so that at any stage
of the construction a nonseparable graph can be obtained.

Based on these theorems, let us consider a method that a circuit is constructed from
a wheel—a wheel W, containing z (# > 4) vertices. Its nullity NV is equal to n — 1.
From Theorem II, it is possible to construct a circuit C,, by removing n — 2 arcs
from the wheel W, . In this case, a number of arcs which can be removed from a
C-vertex (the center of the wheel) is at most # — 3, because if # — 2 arcs are removed,
the degree of the center of the wheel is equal to 1 and this is contradictory to
Theorem I. Consequently, just one arc must be removed from other arcs. When
n — 3 arcs are removed from the C-vertex, there exist just two vertices P, () having
deg 3 in the resulting graph G. Only when the two vertices P, O are adjacent to each
other can a circuit €, be constructed by removing an arc (P, 0) from the graph G.
Unless the two vertices P, () are adjacent to each other, the circuit cannot be can-
structed; but it is recognized that there exists at least one process constructing a
circuit from the wheel by erasing arcs,

Levma 16, Any nonseparable web having n (n = 4) wertices can be obtained by a
sequence of aperations of the following iypes:

(I) The construction of a wheel W, (n = 4).
(IX) The construction of G-1 by adding arcs ar a chain of arcs to W, in this case, all
new vertices are adjacent to C-vertex.
(III)  The construction of G-II by removing some arcs from W, , G-I if the degree of
C-vertex is more than K (K 2= 2).

(IV) The construction of G-1I1 by removing just one arc (P, Q) from W, , G-1 or
G-11 if three vertices P, Q and C-vertex are adjacent to each other,

The obtained graphs W, , G-1, G-11 and G-111 are nonseparable and all such graphs

can be obtained at any stqge of the eperations mentioned above.

Proof. In the proof of this lemma, the following lemma is used.

Lemma 17, An nmcswg of Fig. 8 indirectly generates a set of all separable webs.,

The proof of this lemma is trival from Montanari’s Theorem 2. In a web derived
by this grammar, if a C-vertex is removed by the indirect generation, the web iz a
nonseparable web having no marked vertex, Similar to this case, if a C-vertex is
removed from W, , then we can obtain a circuit C, and by adding arcs or chains to
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C, ,any nonseparable web G’ can be obtained. The graph G-I (W,) can be considered
as 2 graph which is, therefore, construeted by adding C-vertex to & (C,). In this case,
the addition of C-vertex can be done by the following three operations:

(a) a length of circuit or a chain of arcs is extended by 1,
(b) a new chain of arce whose length ig equal to 2 is added,

(c) some arcs between a new vertex (C-vertex) and all other vertices are added
after the operation (a) or (b).

When the operation (b) is applied to the two adjacent vertices Pand (, a nonseparable
web can be obtained even if an arc (P, Q) is removed (see Fig, 8a). This corresponds

={S,A,c}, .lr',-=[a a} v, = a

s {3) 2

5y 4 = ¢ (6) € —

Fic. B. This nmecswg cun indirectly generate a set of all separable webs, After m (m = 0)
applications of rule (3), a wheel W, can be derived.

to the operation (IV), and operation (I1I) corresponds to the reverse operation of (c).
Especizlly, if deg € = 2 and the application of (I1V) is possible, circuits can be obtained.
Q.ED,

Fiz, 8a.

'TueoreMm 18. An nmeswg of Fg. 9 generaies a set of all separable webs.
Proof. 1t is clear that all combinations of K, , X and W, by applying a set of rules
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(1)-(9). As rule (7), (8) or (9) must be applied to B-vertex and no arcs are ever added
to two vertices on the different blocks, the separability of the derived web is evident.

Now, we show that any blocks having n (n > 4) vertices can be derived from W, by
applying rules. A set of rules (10), (11) corresponds to the operations {I) and (II)
shown in Lemma 16. If rule (12) is applied, then the operations (I) and (IT) can never
be performed. By applying a set of rules (13)-(18), the operation corresponding to the
operation (III) can be performed, and a rule (19) corresponds to the operation (IV),
Consequently, all blocks can be generated by the given nmcswy. Q.E.D.
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Fro. 9. This nmcswg generates a set of all separable weba,

THEOREM 19. ncswL ¢ nmeswL.

Proof. From the definition of web grammars, the relation ncswL C nmeswl, is
trivial. Referring to Theorems 14 and 18, the proof of this theorem is evident, Q.E.D.
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THrorem 20. An ancfwg cannot generate a set of all circuils.

Proof. A depree of each vertex on a web never decreases after an application of
nonnormal rules. Further, a degree of all vertices on 8 of any rules considered to
generate circuits is less than or equal te 2, since all vertices of circuits are on just two
arcs. Any one of circuits having n (n 2> 3) vertices must be derived from one web W
having & (k < n — 1) vertices whose degree is less than or equal to 2 {note that,
considering a vertex of zero degree, W is a one-point web, Let us denote it as W)
Let a vertex, to be rewritten by a rule of a given ancfwg, be S and 2 collection of
vertices adjacent to .S be S(a). Then, it is clear that the following equation follows:

0 < | Sa)] < 2.

Let us consider the following three cases:

(1} If | S(a)l = 1, then S(a) can be denoted as S(a) = {§;}. A vertex S, is
adjacent to at most one vertex except for S, since 1 & deg S, << 2. A web W is,
therefore, one-arc web or a simple path whose length is finite. Now let a collection of
vertices in the web 8 specified to be images of the vertex S be O(8). A degree of any
vertex Qg in O(f) in the web B is 1 or O (ctherwise, there exists a vertex having deg 3 in
the derived web). Here, let QJ(8) be a set of vertices {Qpy , Ope 500, Q) (1 2= 1),

(i) 1n case m > 2, the type of this rule is nonnormal, and on a web derived
from the web by applying this rule, the degree of S, is more than or equal to 2. Then
the value of 22 must be equal to 2, and the degree of .S, on the web J/ must be equal to
1, that is, 7 must be one-arc web. Here, the following three possibilities are worth
considering:

(a) If deg Qg = 0 and deg Qg = 1, then there must exist a vertex P
or a simple path consisting of Qpy , Py , Py yeuy Py (f 22 2) and P, (or P;) is adjacent to
O, . In this case, 2 web derived by applying this rule is a simple path whose length is
more than or equal to 3 {scc Fig, 10a).

(@,) A
! sta) st %

s * o’ (R s g (A {B) (R
P i E ..... -
(@p2) ( } 18,

Fic, 10a. | S8(e)! = 1, degQpy = 0 and degOpy = 2. In this case, only an open path can
be derived; circuits cannor be derived.

(by If deg Qp = deg Qpe = 1, then 2 web £ is 2 one-arc web or a simple
path, beginning with Qg (Qy) and ending with Qg (Qay)y of which length is j — 2
(j = 4). Then a K or a circuit having § length is derived (see Fig, 10b),



WEB GRAMMARS AND SEVERAL GRAPHS 53
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Fig, 10b. | S@) = 1, degQp = degQp = 1. In this case, circuits can be derived, but
the left member of the rules must describe all the possibilities satisfying the above conditions.

(c) If degQp = deg Qs — 0, a web § consists of only these two vertices
(otherwise, any web derived by applying this rule is disconnected). In this case, a
derived web is a simple path having three vertices,

(i) In case m = 1, the type of this rule is normal. Q(8) can be denoted as
Qg1 - Then it is clear that a degree of Qg is equal to 1 (if a depree of Q5 is 0, it is
meaningless), and that a web 8 must be one-arc web or a simple path. A web derived by
applying this rule is a simple path having more than or equal to 3,

(2) If|S(a)] = 2, then | O(B)} << 2 by a reason similar to case (1). Assume that
there exists at least one vertex O, in Q(B) which satisfies deg Qg =2 1; any webs
derived by applying this rule have at least one vertex whose degree is more than 2
whether this rule is normal or not. Consequently, for all vertices in Q(8), their degree
must be equal to (. Here, if this rule is normal it is meaningless, since the number of
vertices of a derived web does not increase. This rule can be considered as a non-
normal rule, and 2 web £ consists of only these two vertices. A cireuit having 4 vertices
can be derived by the application of this rule, but any other cireuits having m (m = 3)
vertices cannot be derived by applying any rules since the degree of all these vertices
is equal to 2 and all arcs cannot be erased by ancfwg (see Fig. 10c).

(@,,! S stoy (&,
- —= . =

-

(@, (0!

Fie. 10c, | S(a)] = 2, degQp = deg2p = 0. In this case, a circuit C, can be derived.

Except for the case (b), simple paths with any lenpth can be obtained, but these
simple paths having more than four vertices are never converted into a circuit, because,
from the above discussions, simple paths which can be converted into a circuit are
only 2-length simple paths,

(3) If | S(a)| =0, for each rule « = 8, W is a one-point web W, and B is a
cireuit having # (n > 3) vertices.
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Consequently, for the case {b) or (3), the circuits with any length can be derived.
But the web 8 of the rules must describe all patterns of simple paths or circuits; that is,
the set of rules R or the set of intial webs I is not finite, Q.E.D.

"This theorem is intuitively evident from the definition of ancfwg and the embedding
E. Nevertheless, we give a precise proof for this theorem.

CoRroLLARY 21. Anyancfwg cannot generate a set of all nonseparable webs.

Proaf, A circuit is a most simple nonseparable web, From Theorem 18, the proof
is trivial. Q.E.D.

In conclusion of this section, we summarize the results mentioned above.

nlwL C nefwL € ncswl. § nmeswL,
niwL C anlwL G ancfwL,

neswl C I-ncswl,  ncfwL -5-3:': anlwL.

From this section, some typical examples of web grammars which generate a set of
webs whose structures are specified are given. For a simple example, consider a
grammar that generates exactly all bipartite graphs. A bipartite graph is a graph whose
vertex set V can be partitioned into two subsets V; and V', such that every arc of G
joins ¥, with V, , Consequently, 1t is clear that a graph is bipartite if and only if all its
its cycles, if they exist, are even. If a grammar can control a length of any cycles,
it generates all bipartite praphs. It is easy to see that the ncswe of Fig, 11 generates
a set of all connected bipartite graphs.

befsas) () e (g

s A 8 4 A g
1} &= ¢ (2) @& =Fp———ee
8 5 A A & A &
(3} ¢ == )= {4) | 9 —h b————=
o 8 44
(8] & == (8) » > o

Fia. 11. This ncswg generates a set of all connected bipartite weba,

A Gravmmar wriCH GeENERATES EULERIAN GRAPHS

In this scction, we show some examples of web grammars generating Eulerian
graphs, It is well known that a graph is Eulerian graph if and only if the degree of all
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its vertices is even. By extending the method shown by Montanari, a nmeswg can
describe some types of Eulerian graphs.

Turorem 22. A nmcswg of Fig. 12 generates the set of all connected nonseparable
exlerian webs.

v {sa.8} wr{eh 23
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Fic. 12. This nmcswg generates a set of all nonseparsble eulerian webs. A-vertex has even
degree and H-vertex has add degree.

Proof. Only a set of nonseparable enlerian webs, 'To an initial web, only rule (1) can
be applied, and its consequence is a minimal eulerian graph, except for webs with mul-
tiple paths and loops, which is also nonseparable. As the application of any rules cannot
erase any possible paths, any webs derived from the above nonscparable webs are also
nonseparable. On the step of any derivations, 2 degree of vertices labeled with 4 symbol
{A-vertex) is even and a degree of B-vertex is odd and a number of B-vertices is
even and since a symbol that can be rewritten to a terminal symbol a is only A, the
degree of each vertex of the web is even after the derivation has terminated. Then only
nonseparable eulerian webs can be generated.

All nonseparable eulerian webs, By the iterative application of rule (2) to a web
derived from an initial one by applying rule (1), arbitrary circuits can be derived. In
order to obtain all eulerian webs, it is necessary to prepare rules whick add anarcora
chain of arcs to the two vertices labeled with the above symbols A, B. In case where two
vertices are not adjacent each other, an arc is added by applying rules (3), (4) or (6),
and a chain of arcs is added by appropriate applications of rules (5), (7) or (11) and (2),
(7) or (10). "Then the given grammar has a sufficient set of rules that corresponds to
the above procedure to obtain arbitrary eulerian webs, Q.E.D.
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THEOREM 23. An nmeswg G of Fig. 13 indirectly generates the set of all sepavable
ewlerian webs. :
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Fic. 13. This nmeswe indirvectly generates a set of all separable eulerian webs.

@
(9] »

M>M

(11) {(12)

Proof. 1t is clear that each block derived by the given grammar is a eulerian block
from the previous Theorem 22, If only separable webs can be derived by the given
grammar, the proof will be done. Since 2 web derived from the initial web by applying
rule (1) 1s separable, and no arcs and chain of arcs can be added to two vertices of
diffcrent blokes, that is, it is only the case where a vertex C exists which is adjacent
to both vertices that an arc or a chain of arcs is added to the two vertices. At any steps
of the derivation, the obtained web is always separable. To prove that all separable
eulerian webs can be generated from the intial webs, it is sufficient to show that all
combinations of any blocks can be realized by the given grammar, Let the number of
blocks be 2. If # equals 2, the result is evident by applying rule (1). Now assume that al!
combinations of # blocks can be realized, and hereafter it is shown that all combinations
of n 4 1 blocks is obtained by the grammar, Given a eulerian web B, of its number of
blocks is # + 1. If one block B, of the given web is separated at its cutpoint P, a
remaining web B, has n blocks and can be generated by the grammar, On the derivation
of the web A, , instead of applying rule (3) to the vertex P, a block isomorphic to the
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black B, can be obtained by applying rule (2) to a vertex P and rules (3)—(8) in sucession.
And then, by applying rule (9) to P and each vertex of B, , the web obtained is clearly
isomorphic to the given web which has » -|- 1 blocks. - Q.ED,

THEOREM 24. An nmcswg G of Fo. 14 indirectly generales a set of all eulerian webs.

Proof. 'This theorem follows immediately from the previous Theorems 22 and 23,
Q.ED,

v, * {s.4.8} . V,.;.{'a::} = {e}  1={§}

e KT oo,

A

Fre. 14, 'This nmcswg indirectly generstes a set of all eulerian webs.

A GraMMAR wHicH GENERATES LiNg GRAPHS

The concept of the line graphs associated with given graphs is natural, and has
been studied by many mathematicians.

Let & be a set and F = {S], 8y 1eres Sp} 2 Ffamily of distinct nonempty subsets of .S
whose union is 8. The intersection graph of F is denoted (X(F) and defined by
F = V(Q(F)) with 5, and S; adjacent whenever { # jand S; N S; = ©.If the blocks
of graph G is taken as the family F of sets, then the intersection graph (X(F) is the block
graph of G, denoted by B(G). Now consider the set X of arcs of a graph G as a family
of 2-vertices subsets of P(G). The line graph of G, denoted L(G), is the intersection
graph Q(X), that is, the vertices of L(G) are the ares of G, with two vertices of L(G)
adjacent whenever the corresponding arcs of G are.

For a connected separable graph G with blocks {B,} and cutpoint {C;}, the block-
cutpoint graph of G, denoted by be(G), is defined as the graph having vertices set
{B} U {C,}, with the vertices adjacent if one corresponds te a block B; and the other
to a cutpaint C;, and C, is in B, .

Hereafter a collection of all trees is denoted as T,

'THEOREM 23. An ncfwg G of Fig. 15 generates Ly = {be(G) | G = L(T)}.

Proof. Onuly the block-cutpoint graph be(G). It is known that a graph is the line
graph of a tree if and only if it is a connected block graph in which each cutpoint lies in
exactly two blocks and that graph is the block graph of some graphs if and only if
every block of such graphs is complete. Consequently, C-vertex corresponding to 2
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Fic. 15. This ncfwg genemtes a set of all block-curpoint graphs of line graphs of arbitrary
trees,

cutpoint should be adjacent to exactly two I-vertices corresponding to a block and
its be{G) ought to be a tree. Over the grammar of Fig. 15, it is easily seen that C-vertex
is adjacent to only two A-vertices and that only all trees can be generated from
Corollary 5. Since any endpoints of the generated trees are labeled by I, and Z-vertex
and C-vertex alternately lie on any branches of trees, webs generated by the grammar
clearly satisfy the condition of Theorem 3(2) of Montanari.

All block-cutpoint graphs be(G). It is possible to generate all trees of its two
A-vertices are adjacent to only a common C-vertex and of which 4-vertex has an
atbitrary degree. Since any symbol, except S, that can be rewritten is only symbol A,
if we compare this grammar with the grammar of Lemma 1 in Fig, 1, it is easily seen
that this grammar generates the set of all trees. Q.E.D.

TueoreM 26. An meswg G, with applicability condition of Fig. 16 indirectly generates
== {L{T)}.

Proof. By applying rules (1) and (2) iteratively, arbitrary be(G) can be derived from
the initial web. To a one-point web corresponding to nonseprable line graphs, one of
the rules (13)-(15) is applied at first,

First, we show that all separable line graphs L(7") can be gencrated by a given
grammar, To derive be(G) web, if ane wants to construct a block which consists of
only a one-arc wcb, onc can apply rule (4). When the degree of all vertices of be(G)
except endpoints is 2, if one wants to construct a web whose block consists of only a
one-arc web, by applying rule (6) to the I-vertex (except endpoints) and rule (4} to the
others, one can construct the desired web because the applicability condition of rule (12)
holds and that by applying first rule (12) and then rule (11), the derivation can
terminate.

In case of deg 1 2> 2, one of the rules (3){7) can be applied to the I-vertex. If the
isomorphic to the rules, derived by applying rule (5) or (7) can be derived, An
rules (8)~(10) are applied to the webs derived by applying rules (4) or (6), webs
application of rules (8)—(10) corresponds to an operation of adding a vertex or an are
to the complete block (in the grammar of Theorem 4 [Montanari], his rule (7) corrc-
sponds to the operation of adding 2 chain of arcs, but our grammar need not have such
a rule because each block is a complete block).
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Fic. 16, ‘This nmcswg with the applicability condition indirectly generates a set of all line
graphs of trees T,

From the previous result, since it is difficult for nmeswg to generate complete
graphs, arbitrary complete blocks are generated by use of the applicability condition of
rule (11). As rule (10) must be applied iteratively to the nonadjacent vertices on a same
block until the applicability condition of rule (11) is satisfied, each block becomes a
complete block.

Second, we show that all nonseparable line graphs can be generated by the given
gramrnar. This web corresponds to a one-point web and if rule (15) 1s applied to this
web, trivial line graph-one-point web, i.e., a line graph of a one-arc graph, is generated;
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and by applying rule (14) to an initial web, nontrivial minimal line graph is generated.
By applying rule (13) to the initial web, K is generated, and by iterative application of
rules (9) and (10), arbitrary complete blocks can be generated, for the same reason as
described above. Consequently, all L(T') can be generated by the grammar,

Only line graphs of trees. This part is a direct consequence of the necessary and
sufficient condition of L(T') and of the proof given by Montanari. Q.E.D.

In the grammar given by Montanari which generates all separable webs, if his
rule (2) is applied to an J-vertex whose degree is more than 2 and rule (3) is applied
to an I-vertex the degree of which ie more than 3, there exist no rules applicable to a
derived web, and the derivation, therefore, does not terminate. In this grammar, the
derivation always terminate, But we do not discuss a general problems here.

It is easily seen that there exists a grammar that does not make use of block-cutpoint
graph and that is equivalent to the above- mentioned grammar. In this paper, we
adopt Montanari’s method to make clear the justification of our insistence.

Now, consider the grammar that generates a set of all line graphs. The necessary
and sufficient condition for a graph to be a line graph is that its arcs can be partitioned
into complete subgraphs in such a way that no vertex lies in more than two of the
subgraphs. Given a line graph L(G), there exists at least a family of partition
£ = {B,, By ,..., B;}, where B; is a block. For { 5¢j (1 < {,f < n), let Cy be a
collection of vertices which lies in both B; and B, . From the definition of the web,
i.¢., all webs do not have loops and multiple paths, the following lemma holds.

Lemma 27, 1 Cyl =1,

Progf. Assume that | Cy| =#n(n > 1) and C; = {C,, C;,..., C,}, where C; is 2
common vertex of B; and B, . Since each block B, and B, is complete, €, and C,, are
adjacent in both B; and B; and this implies that'there exist at least # multiple paths.
'This Is a contradiction. Q.E.D,

Now, Iet 2 set of Cy be {Cy}. BD-graph, denoted by bd(G), of a line graph G is
defined as a graph having vertices set {8} U {Cy;} with two vertices adjacent if one
corresponds to a block B; and the other to C,;, and Cy, is in B, and B, . Note that if a
graph is be{@), then it is also a bd(G).

When a line graph G is given and if one can construct a bd(G) of G, it is always
possible to generate an infinite set of line graphs which contains a given G by corre-
sponding B-vertex to complete blocks and C);-vertex to 2 common vertex between
two blocks. For a given line graph G, of course, the partition of G is not always unique,
But if all possible bd{() can be constructed, it is evident that all line graphs can be
generated by use of the constructed bd(G). From the above-mentioned discussions, the
following two theorems hold.
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Turorem 28. An meswg G with applicability condition of Fip. 17 penerates a set |
of all bd(G).

Proof. Only BD-graph of line graphs. From Lemma 27, any Ca-vertex corre-
sponding to C;; should be adjacent to only two I-vertices corresponding to B, . Since
C-vertex is adjacent to just two A-vertices and nonadjacent to any other vertices, and
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Fre, 17. This nmcswg with the applicability condition generates a set of all BD-graphs,

alse by the applicability condition of rule (6), different C-vertices are forbidden to be
adjacent to the same more A-vertices, it is clear that no webs except bd(G) can be
generated by the grammar,

All BD-graphs.  1f two C-vertices arc adjacent or there is an arc between C-vertex
and J-vertex, webs which do not belong to bd(G) are generated because every C-vertex
can be adjacent to only two I-vertices. Consequently, the possible pairs of vertices
which can be rewritten by the rule are the following:

(1) To the nonadjacent two A-vertices which are not adjacent to the same
C-vertex, an arc on which just one new C-vertex lies is added [this is done by rule (6)];

(2) To the two A-vertices adjacent to the same C-vertex, a chain of arcs the
length of which is 4 is added [this is done by rule (3)];

(3) To the A-vertex and C-vertex which ate adjacent to each other, new two
vertices A-vertex and C-vertex are added on the arcs [this is done by rule (5)].

And the other rules are similar to the ones of Theorem 26—that is, by applying
the rules corresponding to the above-mentioned 3 cases and rule (1), nonseparable
bd(G) are derived, and by applying the rules except rule (7), separable bd(G) can be
derived. [Of course, it happens that separable blocks are converted into nonseparable
ones by applying rule (6)]. From the above discussion it is clear that all bd(G) can be
generated by the given grammar. Q.E.D.
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THEOREM 29. Arn nmceswg G of Fig. 18 indirectly penerates a set of all line graphs.
Proof. 'This theorem immediately follows from Theorem 26. Q.E.D.

Finally we show the grammar that generates that set of all 3-connected graphs.
A set of all 3-connected graphs is the special case of a set of all nonseparable ones, that
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Fi¢c. 18. This nmeswg with the applicability condition generates a set of all line graphs,
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is, nonseparable graphs is 2-connected. For the construction of 2-connected graphs,
the addition of an arc and a chain of arcs to the K, is necessary as described before,
and this procedure can be done by the normal grammar. But, for the construction of all
3-connected graphs, the division of a vertex to at least two vertices is necessary and it is
difficult to realize such an operation by the normal grammar because all vertices
adjacent to the former vertex must be adjacent to the exact one of the two rewritten
vertices and such a collection of vertices can exist in graphs without limits, But by
nonnormal grammars, such an operation can easily be realized.

‘Tuecrev 30. An anmceswg of Fip. 19 penerates a set of all 3-connected graphs.

{sx:aca/ v,= faf . 1:{5

D

A A
(3) # == » (4) .
(5) 5 &5 o-{awoaz4}, - {Im o =1{8, c;}
; ; ; @ ={deq g 24}
c
V ; €= {deqﬁ'>4}
{8) .——-—1 = 1——--——-——£ {9) l == .

Frc. 19. This anmcswg generates a set of all 3~conntcted graphs, Nate that the applicability
condition of rules (5}<(7) can be described in their context, and that rule (3) is nonnormal,

Outline of proof. This theorem immediately follows from Tutte's theorem
[Theorem 13]. He has shown that all exact 3-connected graphs can be obtained by the
following procedures:

(1} Al wheels are 3-connected.

(2) All graphs that can be obtained from a wheel by a sequence of operations of
the following two types;

(i) the addition a new arc,

(ii} the replacement of a vertex v having degree at least 4 by two adjacent
vertices v, , v, such that each vertex formerly joined to » is joined to exactly one of vy
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and 2, so that in the resulting graph, dege; > 3 and deg v, > 3. Rules (1)-(3)
correspond to the case (1) and rule {4) to (i) and rules (5)~(8) to (ii). The nonnormal
rule (5) divides an A4-vertex into B, C-vertex. If rule (6) or (7) is applied repetitively
until the contextual condition results in a failure, a minimal 3-connected graph derived
from the host 3-connected graph can be obtained, Consequently, the completeness of
this grammar is clear, Q.ED,

CONCLUSIONS

The classes of web grammars and the languages of various types of web grammars
have been investigated. The normal context-free web grammars can generate the
proper subsets of the webs whose number of types of blocks are finite, The nonnormal
context-free web grammars can generate proper subsets, the number of types of blocks
of which is not always finite, And the indirect generation by normal context-senseitive
web grammars is a strong generating device in comparison with the generation by ones.

Finally, various types of web grammars that generate some interesting graphs are
shown. According to the results in this paper and in Montanari’s, almost al} graphs can
be described by web grammars, However, we could not solve the relation between
nmeswl and I-nmeswT.,

For a future study, the type of applicability condition and a reasonably different
definition of an embedding part will be the topics.

In this paper, we take the attitude that belongs mare to the arcas of description of
graphs than to automata theory. We think that it is not unreasonable to predicate that
we can conceive of machines which accept or recognize various types of graphs. We
want to concentrate on this point from new on,
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