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ABSTRACT

77 The purpose of this paper is to consider the behavior of a finite automaton in a nonsta-
~onary random environment. The behavior of finite deterministic automata in stationary
random environments was considered by Tsetlin. In this paper, the probabilistic automaton
is introduced as a random environment in order to generalize the stationary random environ-
ment. The interaction between the probabilistic automaton and the two-state deterministic
automaton is considered in the case where the probabilistic automaton has two inputs and
two states and, besides, is completely isolated by the Oth approximation. And the limiting
state probability distribution of this finite automaton is also obtained. Moreover, it is shown
that, if the probabilistic automaton is completely isolated by the (0, £)th approximation and
satisfies some conditions, then the finite automaton can behave expediently against the
probabilistic automaton,.

I. INTRODUCTION

Automata which behave intelligently in random environments were formu-
lated, at first, by Tsetlin [1]. He considered the behavior of a finite determinis-
tic automaton in a random environment and showed that if a linear strategy is
applied to the state transition of the automaton, then, under certain conditions
the automaton shows asymptotically optimal behavior.

7/ Based on Tsetlin’s model, many studies have been done. For example,
varshavskii and Vorentsova [2] extended the Tsetlin’s model and used a proba-
bilistic automaton with a variable structure. Krylov [3] modified this Tsetlin’s
model by using a pseudoprobabilistic automaton and showed that asymptotic
optimality is preserved. Fu and Li [4] also proposed the different type of the
deterministic automaton which shows asymptotically optimal behavior. How-
ever, a nonstationary random environment whose penalty probability varies, is
hardly considered. Chandrasekaran and Shen [5] only investigated an optimal
behavior of a probabilistic automaton in a periodic environment,
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In this paper, probabilistic automata are employed as nonstationary random
environments. The behavior of a finite deterministic automaton with two states
in a nonstationary random environment is considered. At first, when a probabil-
istic automaton is completely isolated by the Oth approximation in the sense
that Yasui and Yajima [6] defined, the limiting state probability distribution of
this finite automaton in this environment (or the probabilistic automaton) is
obtained. If the probabilistic automaton satisfies more conditions than stated
above, the finite automaton behaves expediently against the probabilistic autom-
aton in the sense of the Tsetlin's model.

2. THE INTERACTION BETWEEN A FINITE AUTOMATON AND
A PROBABILISTIC AUTOMATON

We shall briefly review the interaction between a finite autormaton and a
" random environment introduced by Tsetlin [1].

~ He considered the function of finite automata responding to their actions
within an environment in a random fashion as shown in Fig. 1. Suppose the

Random Environment

C(R.R,-==.8)
A
e {u, Uy ==} xe{0,1}
v
Automaton A

Fig. 1. Tsetlin’s model.

random environment C is characterized by C(p,,Pp2,...,Px) Where 0 s<p €1
fori=1,2,...,k Theinputx of an automaton 4 can take two values, that is,
x =1 (penalty) and x = O (nonpenalty), and the output u of A is the action taken
by 4. In one experiment, if the automaton 4 takes action u;,i=1,2,...,k%,
then the next input x of 4 is as follows

1, with probability p;,
X =
0, with probability 1 - p;.
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The automaton operating in the random environment aims to minimize the
expectation of penalty, or the limiting penalty ratio M (A4, C) given as

number of penalties in first n trials

lim

n-»oe n
Then, after Tsetlin, a linear strategy was used in the state transition of the autom-
aton A, and it was shown that if the random environment is stationary, that is,
each p; is unknown but fixed, the automaton A shows expedient behavior, that
is, the expectation of penalty imposed on the automaton A is less than that in
case where each u; is put into the environment with the same probability 1/k,
thus the limiting penalty ratio may be given as

1
M(A.C)<;(P| +py ot pe).

Furthermore, it was shown that under such a condition as

min(pl:pZ:- . :pk)g%

the automaton 4 shows asymptotically optimality; that is, M(4, C) decreases
and approaches to min (p,, ps,...,Px)} as the number of the states of 4 is-
increasing. Let min (py, p2,...,Pr) be p;, then y; is the optimal output of the
automaton A.

As described above, the output probability distribution of random environ-
ments in Tsetlin’s model depends only on the input at that instant. However,
generally speaking, the output of an environment depends not only on the input
at that instant but also on preceding inputs, In other words, environments have
internal states memorizing past behaviors. Therefore, in this paper, probabilistic
automata are employed as random environments in order to extend the random
environment defined by Tsetlin. In this case, it is supposed for simplicity that
probabilistic automata (or random environments) have two inputs, two outputs
and two states defined as follows.

Definition 1. Environment C is a probabilistic automaton given as follows

C = (Us T' X: i(h {P(u)IuE U}!g)
where

(1) U= {u,,u}, set of inputs;

() T = {t,,1;}, set of internal states;

(3) X = {0, 1}, set of outputs;

(4) m = (1, 0), 2-dimensional probabilistic row vector (initial state probabil-
ity distribution);
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(5) P(u), probability transition matrix of order 2 such that

» _(l-a a P _(l-c c
=1, l-b), W)=\ l—d);

(6) g(-): g(1,)=0,g(t,) = 1, output function.

Definition 2. The transitional probability matrix for an input string u* =
u @ .« 0 i5 defined as follows

P(u¥) =P(u(‘))P(um) e P(u(m)).

The state probability row vector (state probability distribution) at the instant
of m + 1, is given by

a(m+ 1) = 7o P(u*).
Remark. In a special case where
ath=1, c+d=1,

the environment C defined in Def. 1 becomes the random environment in the
Tsetlin’s model. :

We shall next discuss the interaction between a two-state deterministic autom-

aton and a random environment C defined in Def. 1.
At first, we shall explain the probabilistic automaton which is completely iso-

lated by the Oth approximation. Suppose that the state I, of the probabilistic
automaton C corresponds to the output 1 (penalty) and the initial state is the
state t,. Then the penalty probability may be given by the (1, 2)-element of the
transition probability matrix caused by an input sequence. At timef, the penalty
probability caused by an input u; € UG = 1, 2) is given as (D).

Definition 3. The probabilistic automaton is said to be completely isolated
by the 0th approximation, if the following conditions are satisfied

Ip, (1) - ofo|‘<¢?»_ P2 () - Bol <€, lag - Bol = 2, (2.1)
where
a c
= — = . 22
w= g Pt (2.2)

This definition is shown in Fig. 2.

R A(t)
e ————

0 B, Qy L

e,
C

Fig. 2. Penalty probability of a completely isolated probabilistic automaton by the Oth
approximation.
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THEOREM L. [Yasui and Yajima [6] ) A necessary and sufficient condition
for the probabilistic automaton C being completely isolated by the Oth approxi-
mation is

§ max {IH]l, 1421, 1821} _

Hl|#0, and h= < 1
14211 %0, and h =177 T
where
|be - ad| a c
H| = , ldxll=——, |Byll=—,
A @+b)(c+d) 1421l +1 | B2l T+ d

S=max {|1-a-b|, |1-c-4d|}.

When a probabilistic automaton C is completely isolated by the Gth approxi-
mation, the combination between a finite automaton and a probabilistic autom-
aton may be regarded as the one between a finite auotmaton and a nonstationary
random environment C(p,(t), p,(f)) which satisfies Eqs. (2.1) and (2.2) as
shown in Fig. 3,

Non-Stationary
Random Environment

C( R, pb)

ultie {u-,- uz} x(t)E{O, 1 }

Finite Automaton

A

Fig. 3. Interaction between a nonstationary random environment and a finite automaton.

For state transitions of the automaton A4, a linear strategy is used as shown in
Fig. 4. By using Tsetlin’s method of the analysis, the state transition of the
automaton A is determined by the following probability matrix at time t,

g1(t) p1(?)

P(H=
® (Pz(f) q2(t)

), p(D+q(y=1,fori=1,2.
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S) Osz 61 520

x=1 x=0

Fig. 4. State transition of a finite automaton 4.

As mentioned above, if a random environment is completely isolated by the
Oth approximation, the behavior of the finite automaton A can be expressed by
using the nonstationary state transition probability matrix P(¢).

3. THE LIMITING PROBABILITY DISTRIBUTION OF THE
FINITE AUTOMATON

Based on the result of the previous chapter, nonstationary automata with one
input are defined and the limiting state probability distribution is considered in
the present chapter.,

Definition 4. A nonstationary automaton A with one input is a system
A=(S,P,m

where

(1) S = {s,, 5. }; set of internal states
(2) P(1); state transition probability matrix at time ¢ such that

l-a «
P=P(t)= ( ) (3.1)
g 1-8
where
a=a(t), B=8(), 0<a, <!
a- gl <e, [B-fol<e
€= lag = fol/2 (3.2)
(3) n(?); state row vector at time ¢ such that

n=at)=(@1-7r). (3.3)

where

r=r(®) O=<sr(n<l
n(t+ 1)=n(@)P(1). (3.4)

The definition of the nonstationary automaton is over. Let us investigate the
behavior of this automaton, At first, the case where a and § are fixed is
considered.
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The limiting state probability vector is given by

i A
ng:o w(n) (a+5’ a+ﬁ)' (3.5)
Let f(c, B) be
8
fad=r"rp (36)
where a and f satisfy Eq. (3.2), then we have
_ _ - Bo te
rg?;‘f(a’ ﬁ) "f(ao €, ﬁo + E) g + Bo, (37)
, _ e fo-¢€
r;}lﬂnf (@,f)=f(ao t€, Bo-€)= . (3.8)

When the limiting state probability is equal to the value given by Egs. (3.7) and
(3.8), we represent the corresponding state transition matrix as F. and P_,

respectively, i.e.
l-ayte og-¢€
He=( ’ ) (3.9)
fote 1-PBo-¢€ |
(l—an—e 0 T € )

Bo-€ 1-8p te

P, = (3.10)

We shall next consider the case where o and § are time varying, that is, the
automaton is nonstationary. Let us give the following two lemmas,

LEMMA 1. At an arbitrary time k, the following inequality about the transi-
tion matrix P(k) holds;

lm(k) Ee| < (k) P(R)| < (k) Fel .11

where, |n| is designated as the Ist element of the vector.

Proof,
l-a «
il )
g 1-8

=r-a+(1-ng (3.12)

where a and B satisfy Eq. (3.2). Then {a(k)P(k)| has a maximum value when a
and § are '

lm(k) P(K)| =

ak)=ao - €, B(k)=po +e,
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Fig. 5 Explanation of Lemma 1.

respectively. Thus,
P(k) =F,.

Similarly, [m(k)P(k)| has a minimum value if the following equation holds.
Pky=P, =

LEMMA 2. Let the state vector at an arbitrary tfime k be m, or m,, and the
transition matrix be P(k). If the following equation holds

m=rn,1-n) m =(r;,1-1), n>n

then, we have

(1) 0< |m P(R)} = Imy PO < |my | - Iz (3.13)
if 1 - a(k)- Bk) =0
(2) 0< |my P(k)| - |my PUR) < lmy| = Ima (3.14)

ift-ak)-pk) <0

1 )(l—a o ‘
h,L-n -
B 1'[3)

=(n~r)(-a-p)
= (lml - Iml) (1 - a- 8),

Proof.
lmy P(K)| - |my P(K)| =

s 1 )(l—a a)'
Fy, r2 6 1—6 »

where
rH>r, 1-a-gi<l.

The lemma was thus proved. ®
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M rit)
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Fig. 6. Explanation of Lemma 2-(1).

Lemma 1 and Lemma 2 are illustrated in Figs. 6 and 7 respectively. Let us
next show that the limiting value of the state probability of the state ¢, is within
a certain extent.

THEOREM 2. If 1 - &g - B = Q0 and n - 2, then

o '; <rim< P te (3.15)

A0

| m, Pk

Iﬂ,P(kJI

v
ot

Fig. 7. Explanation of Lemma 2-(2).
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Proof. (i) Using mathematical induction, we can show that the following

(3.16) holds for a certain positive integer k and an arbitrary positive integer n,
[n(k) Pl < ln(k) P(R) Pk + 1) - - ‘Plk+n-1)

< |m(k) Pl (3.16)

By Lemma 1, (3.16) holds for n = 1. Let us next assume that Eq. (3.16) holds
for n = ny, that is, the following holds.

(k) 201 < |n(k) P(k)P(k + 1) - - - P(k + g - 1),

< ln(k) B, (3.17)
We can rewrite (3.17) as (3.18), i.e.
1T_el < |n(k + np)| < |7 (3.18)
where
Te=mk)Phe, m. =n(k)PM. (3.19)
From the assumption 1 - &g - B3 >0 and Lemma 2 (1), we have
lm(k + no ) Bl < |m, P (3.20)
Moreover, from Lemma 1 we obtain
ln(k + 1o ) Pel < |n(k + 1o YP(k + no)| < Ik + ng ) B 3.21)
From (3.19), (3.20), and (3.21), we have
1T_¢ Pl < |m(k + no ) P(k + ng)i < |m B, (3.22)

that is, .
(k) Ko™ | < \m(k) P(R) Pk + 1) + - - P(K + ny)|,

< |n(k) P, (3.23)

From the expression of the above equation (3.23), it is shown that (3.16) holds
for n = ny + 1. Hence, we obtain that (3.16) holds for an arbitrary n by using
mathematical induction. The above equations are summarized in Fig. 8.

(i) If n — oo, then from (3.7), (3.8), (3.9), and (3.10), we can find

Bo-¢€
k) P"| - , 3.24
[m(k) P % ¥ B (3:24)
“and By te
AT A R 3.25
tmr(k) e | P ( )

Moreover, the following holds
In(k)P(K)P(k + 1)+ - -P(k+n)| =r(k+n+ 1). (3.26)
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Fig. 8. Explanation of the proof of Thecrem 2.

Thus, if n = o=, from (3.16), (3.24), (3.25), and (3.26), we conclude
Bo +¢

Bo - €
S <€ 2—. n
ap + f &g * Py

THEOREM 3. If 1 - &g - Bo < 0 and n - =, the expectation M(r(n)) of the
state probability r(n) given by
M@r(n) = {r(1)+r(2) + - - +r(n)}n

becomes as follows,

Bo-€ Moy < Bote (3.27)

g * Bo g + o

Proof. (i) Suppose the following (3.28) holds for a certain positive integer n;,
where n; <nyy, fori=1,2,...,

(1) B2 < Im(1) P(1)P(2) - - - P(n; + )], (3.28)
we have the following (3.29), (3.30), and (3.31)
() P1)P2) - - - Plny + 1) < |m(1) B, (3:29)
(1) P(1)P(2) - - - Py + 3)| < [n(1) B3, (330)
and
Im(ry + 2)1 + In(ny + 3) < |w(V)BFE Y + |m(1) BT (3.31)

It is trivial that we can obtain these three equations from Lemma I, Lemma 2 (2)
and (3.28). The above equations are summarized in Fig. 9.



134 HIDEKAZU TSUIJI, et al.

A rit) | |
nil1 |
RICLANE | |l 2 . ;
I ,*
: Ll " 71
|
|
|
| | ! n(k)P I
|
L/ Pllenyl) ! |
| (ke nye DI | Pleng#2) |
|
| ! |
| I '
| : :
k*niﬂ kvpnl*? kfn,l-pj - t

Fig. 9. Explanation of the proof of Theorem 3.

(i) From (3.28), (3.29), (3.30), and (3.31), we obtain the following
inequalities.

Im(2) < Im(1) Fel,

In(n, +2)| + |n(ny + NI< WA+ Im(1) P43,
In(n, + 4 < l7(1) P73,
tn(n; + )| + In(n; + 3 <Im(1) B + [m(1) BR2,
ln(n; + 4)| < lﬂ(l)PE"fHI,
la(m)| < |la(D) B
Summing up all these inequalities, then
(D] + 7)) + - -+ + ()| < lm(1)} + ()P + -+ (DB (3.32)

If n = o=, from Eq. (3.25) we have

(r(D1+ ORI+ -+ W OE > 22 (33)
&g 0
Hence, if n = oo, from Egs. (3.32) and (3.33) we have
flo +e
M < : 3.34
(r(n)) o ¥ f (3.34)
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Similarly, if n -+ oo, then
fo-c¢
ap *+ B

Corollary 1. If n = oo, the following holds

<M(r(n)). =

Bo - € fo te
oo * fe SM(ir(n) < o * fa

Proof. This proof is easily obtained from Theorem 2 and Theorem 3.
4. EXPEDIENT BEHAVIOR OF FINITE AUTOMATA

Based on the limited state probability distribution of the finite automaton
given in the previous chapter, the limiting penalty ratio represented as

number of penalties in first n trials

lim
n—+oo n
is obtained. Comparing this limiting penalty ratio with the one obtained in the
case where inputs are put into the environment with the same probability, it is
shown that the finite automaton can behave expediently. |
In the previous chapter, the expected state probability of the state s, of the
nonstationary probabilistic automaton A has been obtained. From this result,
the expected state probability M(1 - r(n)) of the state s, is

&g ~ € Qp T €
SM(A~r(n)<
& t fo &g t Bo
as n - o, Since ap, fo and e satisfy (3.2), we have p,(¢) > p,(8) if ap > Bo
is assumed. Therefore, in the sense of Tsetlin’s model, the optimal output of the
finite automaton is ¥,. Furthermore, if n = o, from (4.1) and Corollary 1, we
have

(4.1)

M(r(n)) <M({ - r(n)). (4.2)

In other words, the automaton A takes an optimal output with a larger probabil-
ity than that associated with a nonoptimal one. In the case of Tsetlin’s random
environment, a finite automaton behaves expediently if and only if the finite
automaton takes an optimal output with a larger probability. However, in the
case of the nonstationary random environment as in this paper, we cannot con-
clude easily that a finite automaton behaves expediently. Therefore, in this case,
we shall call that a finite automaton behaves pseudo-expediently.

Let us then consider a true expedient behavior. At first, penalty probability
at enough large time in the case where each input is put into the probabilistic
automaton with the same probability, is obtained.
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The state transition probability P(u*) = P(u('))P(um) -+« P of the in-
put sequence u* = y(h,@ ... 0 represented by CWC® ... 00 54 £41.
lows. When the jth input 2/} of the input sequence is u; (i = 1, 2), CY) becomes
P(u;), where

Pu,)=A, PQu,;)=8B.

Let us represent the kth fundamental matrix of the matrix Cascl )(k =1,2),
where CG{) =4, when €)= 4, and G = B, when ¢V =p.

LEMMA 3 (Yasui and Yajima [6]). 4 product of the stochastic matrices
COCD ... oy pe represented as follows

cWe@...cm - cMm 4+ vgm)cl(m-l)cz(m) + pfm-1 vgm)cfm “Aofm-Ny
+ Vgﬂ l,:s-'i) - ,,gm) Cl(l)cgﬂ) + vgl)vgﬂ ce vgm) Cé’), 4.3)
where

A1A2 =ﬁ-, BIBQ-—-EI,

lbc - ad] 1 '1)
H: B =-B.4, = s 4.4
AiBy =-B1 4, (a+b)(C+b)(1 -1 (#44)
- - = 4 (j)::
v(”={l a-b=x fCPN=4, 45
2 . x
l-c-d=p, ifc=g,
b e 4 e
a+h aga+b c+d c+d
Al= , Bl= s (4.6)
b a4 4 ¢
at+b a+b c+td c+d

Definition 5. Let z be any input sequence of length m, then rhe expected
matrix M(p(z)) of the transition matrix P(z) is defined as follows

MPE)iy= X 2P, ij=1,2

zely,
where

U%, set of all input sequences of length m;
Pz, a priori probability of z; -
|Dl; ;, the (i, j)-element of the 2 X 2 matrix D,

THEOREM 4. [fatan arbitrary timej, the input ull) of the probabilistic autom-
aton C becomes u, (or u,) with probability 1/2, and \ = K, then the expected

10is 2 % 2 zero matrix
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matrix M(CVC® - - -) of the state transition matrix CWC® - - - for the infi-
nite input sequence uVu® - - - is

MCDCD ... = A + By

2

Proof. Let the length of an input sequence uMu® - -4 be m. Using
Lemma 3, CVC® - .. ¢ is given by Eq. (4.3). Let us now consider the ex-
pected matrix of each term in Eq. (4.3). The kth term (k=2,3,...,m)inEq.
(4.3) is written as

4.7

vgm—k+2) vgm-kﬂ!) e vgm—l)vgm)cfm—k+l)Cém-k+2).

Since both =%+ and € ~¥+2) 4re either A or B with probability 1/2 from
the assumption, cim-k+1) lm-k+2) 55 equal to one of 4;4;,4,B,,B,4,,and
B,B, with probability 1/4. From Eq. (4.4) the expected matrix of the kth
term is

MO 5D oDkl kD) = ¥4, B, /4 + B142/4) = D.
The expected matrices of the 1st term and the (m + 1)th term are, respectively,

A, +B
MMy ==——,

and
A, + B,
——-——2 ;

Hence, the expected matrix of the state transition probability matrix for the
input sequence 1M u® -+ - - 4™ s

M(vgl) ,,32) e vgm) C%')) =1

A, +B, N A, +B;.
2 2

When |\ < 1 and an input sequence is infinite, i.e. n - oo, we have

M(c(l)c(‘l) e C(m)) =

A8y o

)\m
By Theorem 4 and (2.2), it can be shown that if either u, or u, is put into
the probabilistic automaton with probability 1/2 and A =pu (ora + b = ¢ + d),
then the penalty probability R(C, t) at enough large time ¢ is (o + 0 )/2.
Extending the concept of being completely isclated by the Oth approximation
defined by Yasui and Yajima {6], we can define the concept of being completely
isolated by the (0, k)th approximation. Based on this concept, the expedient
behavior is considered as follows.
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Definition 6. A probabilistic automaton C is said to be completely isolated
by the (0, k)th approximation, if the following conditions are satisfied
I (1) — a0l <&, |pa{t) - Bol <6,
lag - Bol = ke, k=2, (4.8)
where ag, fo, p1(¢) and p, (¢) are the same as those in Def. 3, respectively.

LEMMA 4. A necessary and sufficient condition for the probabilistic automa-
ton being completely isolated by the (0, k)th epproximation is

(1) N5 +0

k5 max (LI, 140, IBs 1} _ (4.9)
1-6 [l

) H=

where 8, ||}, |4,{l, and [|B;|| are the same as those in Theorem 1, respectively.

Proof. From the proof of Lemma 2 in the Yasui and Yajimas® paper [6],
we have

8

lag = Bol =NHI Z ke=k I—_-Emax {IIHl, §A21l, (1B, 1}. =

LEMMA 5. If a probabilistic automaton is completely isolated by the (0, k)th
approximation, this automaton is completely isolated by the Oth approximation.

Proof. 1t is trivial from Defs. 3 and 6.

Next, let us compare the penalty probability in the case where the finite au-
tomaton and the probabilistic automaton have a mutual interaction, with the
penalty probability in the case where inputs are put into the probabilistic autom-
aton with the same probability. '

LEMMA 6. If two input sequences, u* =y W@ .0 apg ¥ = 20 @
e y® , satisfy the following conditions

W =yY) forj=1,2,...,n-1,
u® =y, u® = Uy, ATM,
then, the matrices Py of u* and P, of u™®' satisfy the following
P,-P,=A, - B, - \H. (4.10)
Proof. From Lemma 3 and the assumption, we obtain
P - Py =CP - c +a[cP Ve - ¢V e,

Next, we consider the two cases of the input at time n - 1 as follows:
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() Hu® D=y =y then
crVCf? =4,4, =10,
ch-ver = 4,8, = H.
(i) 1fu® D == =y, then
ch-Ve =B A, = -H,
Ve =B,B, = 0.
From (i) and (ii), Eq. (4.10) is obtained. ®

THEOREM 5. If the probabilistic automaton C is completely isolated by the
(0, k)th approximation and the following conditions are satisfied

(1) A=p=>0,
(2) 1- 0o~ B =0,

g (k- 4)ag
0 < w vy
(3) k+l 60€ k »

then the finite automaton A behaves expediently against the probabilistic autom-
aton C.

Proof. By Lemma 5 and the assumption of being completely isolated by the
(0, k)th approximation, the probabilistic automaton C is completely isolated by
the Oth approximation, From this result along with the condition (2) and
Theorem 2, the state probability 7(¢) of the state s; at enough large time ¢ is

fo - €1(8)
ag B0
Since the outputs #; and u, of the finite automaton 4 correspond to the states

s, and s,, respectively, the probability M(A4, C, t) with which the finite automa-
ton A receives penalty at enough large time ¢ is as follows;

r()= -e<e () <e.

| Bo - €1(2) oy + € (f)
M(A,C, 1) = ———=a(t) + ——— B(1). (4.11)
) oo *+ fo g +fo
Next, let R(C, ) be penalty-probability at enough large time f in the case
where the inputs are put into the probabilistic automaton with the same proba-
bility. Then, from the condition (1) and Theorem 4, we have

ag *+ fo

R(C,t)= 5

Now, compare M(A4, C, 1) with R(C, ?),
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R(C, t)—M(A,C,t)=a° ‘;30 _{ﬂo - €,(7) a(t)+ = El(t) B )}

ap t fo
_ F
e + Bo)
where
F= (g +Fo) - 2{a(t)fo + a0 B(r) + (B(2) - a())e; ()}
From Lemma 6, we have
a(f)- B(1) =ap - fo - MHI,
where |H | is the (1, 2)-element of the 2 X 2 matrix #. Moreover, define
B(D)=Bo +es(r), -e<e(?)<e,
then
F= (00 - Bo)* - 2{AH|(e1(t) - Bo) + €3(2) (o + Bo) + &, (1) (-0 + fo)}.

We can assume a, > §, wnthout loss of generality. Then, from (2.2) and (4.4),
we can find easily

|H|=aq - o > 0.
From this result and the condition (lj, we have
F>(eg - Bo)* - 2{NIH (e - Bo) + eerg + Bo) ~ (-tg + Po)}
= (g ~ Bo)* - 2{NIH (e - Bo) + 2e05 }.

From the assumption that the probabilistic automaton C is completely isolated
by the (0, k)th approximation, i.e. |[H| = ay - B¢ = ke, we have

F>k*e* - 2{\ke(e - ) + 2e0y }
= e{k?e- 2[Ak(e - By) + 20p] }.
Moreover, from the conditions (1) and (3), we can find
F>e(ke - 4ap) > 0.
Hence, we conclude
R(C,t)>M(A4,C, ).

"Now, let the limiting penalty ratios corresponding to M(4, C, t) and R(C, t) be
M(A, C) and R(C), respectively, then it is easily seen that the following holds.

R(C)>M(4,C).

This result shows that the finite automaton behaves expediently, =
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Now, we consider one example of the probabilistic automaton which satisfies
the conditions given in Theorem 5.

06 04 08 02
*oss o) " lors o2
0.55 0.45 0.75 0.25

EXAMPLE.

Then we obtain

A=u=005>0
a 8 - = 4
I = 5, ll4all=00 = ==, B3l = 6o = 5
y 2k ) 19
= — é___
h 19€1 ie. k 3

1"&0—ﬁ0=l>0.

Assuming k = 9, then we have

®% _ 8 4 (k- day _ 8 40
k+1- 190 P19 Tk 171’ 19o< 5 <171

Hence, the conditions in Theorem 8 are satisfied.
5. CONCLUSION

The behavior of the finite automaton in the nonstationary random environ-
ment, that is, the interaction between the finite automaton and the probabilistic
automaton is considered based on Tsetlin’s model in the case where the automa-
ton has two inputs and two states. However, for the case where the number of
the states is n larger than 2, the analysis may seem to be much more complicated
and it will be the problem to be investigated in the future.

The authors thank Mr. Yoneharu Fujita for his discussions about the preseﬁt
study.
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