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ABSTRACT

By extracting the basic properties common to the formal grammars appeared in existing
literatures, we develop a general formulation of formal grammars. We define a pseudo
grammar and derive from it the well-known probabilistic, fuzzy grammars and so on.
Moreover, several interesting grammars such as L grammars, UM grammars, MU
grammars, composite B-fuzzy grammars, and mixed fuzzy grammars, which have never
appeared in any other papers before, are derived.

1. INTRODUCTION

By introducing the concept of randomness and fuzziness into the structure
of formal grammars, some interesting grammars such as probabilistic (or
stochastic) grammars and fuzzy grammars have been formulated [2-5,13, 14].

In this paper, we develop a general formulation of formal grammars by
extracting the basic properties common to the formal grammars appeared in
the existing literature. By corresponding the element of the appropriate
algebra, say, the complete distributive lattice, to each rule of a pseudo grammar,
the evaluation (or weight) of the application of the rule is given. We evaluate a
sentence by performing the operations of the corresponding algebra to the
weight of the rules used in a generation of the sentence.

We derived from the pseudo grammars with various types of algebras the
well-known phrase-structure grammars, probabilistic grammars, and fuzzy
grammars. Still more, the grammars which have never appeared before, say,
L% grammars, LIl grammars, MU grammars, composite B-fuzzy grammars,
and mixed fuzzy grammars are derived.

It can be shown that there are max-weighted grammars and max-
probabilistic grammars as special cases of Ll* grammars, (pessimistic) fuzzy
grammars and phrase structure grammars as special cases of LIl grammars,
and optimistic fuzzy grammars as special cases of MLl grammars.
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The pseudo grammar called a pseudo conditional grammar, whose weight
of the application of a rule is conditioned by the rule used just before in a
derivation, is also defined and from it a few interesting conditional grammars
are derived in the same manner as pseudo grammars.

2. L-FUZZY SETS

We shall briefly review L-fuzzy sets by J. A. Goguen [6] and J. G. Brown
[9] for the purpose of LI* grammars, LM grammars, ML grammars, and
fuzzy grammars which will be defined later.

L-Fuzzy Sets

An L-fuzzy set A in a space X ={x} is characterized by a membership

function p 4 as follows:

pa: XL, )
where L is called a membership space and the value u (x) € L represents the
“grade of membership” of xin A.

A membership space L may be assumed to be a partially ordered set or,
more particularly, a lattice.

When L is the unit interval [0, 1], A is a fuzzy set originated by L. A.
Zadeh [7]. Moreover, when L contains only two points 0 and 1, 4 is a non-fuzzy
set and its membership function u, reduces to the conventional characteristic
function of a non-fuzzy set.

The notions of containment, equality, union, and intersection of L-fuzzy
sets are defined as extensions of the corresponding notions in the ordinary
non-fuzzy sets.

Let A and Bbe two L-fuzzy setsin X, and let u 4, u5 be membership functions
of A and B, respectively; then, for all x in X,

Containment A S B < py(x) = pp(x), 2)
Equality A = B < py(x) = pp(x), 3)
Union AU B < pyp(x) = pa(x) U pa(x), “
Intersection AN B < py~p(x) = pa(x) M pp(x), 5

where the operations <, LI, and 1 represent an order relation, lub, and glb
in L, respectively.

In the case of L =[0,1], that is, fuzzy sets by Zadeh, the operation U
reduces to max, and I to min. In addition, the complement of a fuzzy set 4 is

~ defined as
Complement A< p(x)=1—p4ux), VxeX )
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In this paper, the structure of the membership space L is assumed to be the
complete distributive lattice (or, more generally, the complete lattice ordered
semigroup) on account of L-fuzzy relations denoted hereafter [6].

L-Fuzzy Relation

An L-fuzzy relation R in the product space X x Y ={(x,y)|x€ X,y e Y}is
a L-fuzzy setin X x Y characterized by a membership function ug, i.e.,

Product of L-Fuzzy Relations

If R; and R, are two L-fuzzy relations in X x X, then by the product (or
composition) of R, and R, is meant a L-fuzzy relation in X x X which is
denoted by R, R, and is defined as follows: If L is a closg, then

f"’Rl Rz(x’ Z) = ‘ﬁ [HRl(xa y) * MR;(ya Z)]a (8)

where U and * are the operations of lub and semigroup in L, respectively.
If L is a complete distributive lattice, then

f"'Rle(x’ z)= |—yj [ﬂR,(xay) M g, (v, z)], )
V*Rle(x, z)= T [HRl(an’) L #Rz(y’ z)]. (10)

If L-fuzzy relation R is a fuzzy relation by Zadeh, that is, R is characterized

by a membership function, |
pr: X x Y —[0,1], (11)

then the product of fuzzy relations R, and R, is defined as special cases of (9)
and (10) [8, 12], that is,

MR, Rz(xs Z) = sup, min [/'LRl(xa y)a [“’Rz(y’ Z)]a (12)

1R, R, (X, 2) = inf, max [pg (X, y), pr, (¥, 2)]. (13)

+ A complete lattice which is a semigroup with identity under = and also satisfies the
distributive law, for x, y, x;, y: € L,

x*(Lil )= t;l (x = yy),

and
(';l X)) *y= l;| (x1 = ),

is a complete lattice ordered semigroup (=closg). Still more, if * is replaced by M in closg L,
L becomes a complete distributive lattice.
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Note that the operation of product of (L-) fuzzy relations has the associa-
tive property, i.e., :
R\(R, R;) = (Rl R)) R,. (14)

Hence, let R, R,, ..., R, be (L-) fuzzy relations on X, then the product
R, R, -** R, say, in the case of (8), is defined as

”Rle .. .R,,(xl’ xn+1)

= § [V‘Rl(xlaxZ) * H’R;(xb x3) Horeo ok H’Rn(xm xn+l)]' (15)

X25 0001 Xp

Next, by using the concept of L-fuzzy sets, we shall define L-fuzzy languages.
For simplicity, we denote L-fuzzy languages as fuzzy languages hereafter.

Let 2 be a finite non-empty alphabet. The set of all finite strings over X' is
denoted by 2'*. The null string is denoted by 4 and included in 2*,

Fuzzy Languages

" A fuzzy language FL is a L-fuzzy set in 2'* characterized by a membership
function such as ug : 2* — L.

The operations, containment, equality, union, and intersection of fuzzy
languages are the same as those of L-fuzzy sets mentioned previously (see
(2)-(5)). Moreover, the notions of concatenation and Kleene closure of
ordinary languages can be extended to fuzzy languages by the following:

Let L, and L, be two fuzzy languagesin 2*, and u; and p;, be membership
functions of L, and L,, respectively.

Concatenation

The concatenation of L, and L, is a fuzzy language denoted by L,° L, or
L,-L, and defined as follows: Let a string x in 2'* be expressed as a concatena-
tion of a prefix string # and a suffix string v, that is, x = uv. Then

pr,or,(X) = |;-| [Hle(u) r H’Lz(v)]a (16)
Br,er,(X) = ';l [per, () U #Lz(v)]a (17

where Ll in (16) and 1 in (17) are taken over all prefixes u of x.
Note that the concatenation L,-L, in (16) is related as LIl grammars, and
L,-L,in (17)is related as Ll grammars, which will be defined later.

Kleene Closure

By using the concatenation L,-L, or L,-L,, Kleene closure of a fuzzy
language L (written as L*, or L) is defined as

L*=AULUL-LUL.L.LU---, (18)
L=ANLNL-LNL-L-LN-"--. (19)
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3. VARIOUS KINDS OF GRAMMARS

In this section we define a pseudo grammar, each production of which has
a label, an ordinary rewriting rule, and weight u(r) as in (21) and derive from
it various kinds of grammars, which have or have not appeared in the existing
literature, by employing an appropriate algebra system as a weighting space
and performing the corresponding operations to weights u(r)’s.

DEFINITION. A pseudo grammar (PSG for short) is a system
PSG = (Vy, Vy, P, S,J, M, p), (20)
whére

(i) Vyis a non-terminal vocabulary.
(i) Vris a terminal vocabulary.
(iii) Sis an initial symbol in V.

(iv) Pis a finite set of productions such as

) u — v u(r), (21)

where reJ, u— v is an ordinary rewriting rule with ue Vy* — {4} and
ve (VyU Vp)*, and u(r) is a weight of the application of the production r,
which will be denoted in (vii).t

(v) Jis a set of (rewriting rule) labels as shown in (iv). J = {r}.
(vi) M is a weighting space.
(vii) p is a function such that

peJ — M.

p may be called a weighting function and the value u(r) is a weight of the
application of a production r.

Next, we shall briefly explain a derivation chain with weights (weighted
derivation chain). However, the meaning of weight u(r) denoted over — in a
derivation chain will be stated in each grammar defined later.

If (r)u — v u(r) is in P, and « and B are any strings in (Vy U V)*, then

()

ouf — o, (22)

+ In this paper, we often say label r as production r for convenience.
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and owp is said to be directly derivable from auf8 by the production r. If
0, 0, ...y Oy are strings in (Vy U V1)* and

ulry) u(ra) _ u(ry,)
%o ““r1_> X1, & __rz—> 25 e e vy Ky T > Oy (23)
m

then «,, is said to be derivable from «, by the productions 7, #,, ..., r,,. The

expression
udry) u(ry) u(r,,)
(0.4 > o > oL . >
0 ri 1 ra 2 Fm

Ly (24)
will be referred to as a weighted derivation chain of length m from o, to «,, by
the productions ry, 7, ..., F,,.

When oy = S, «, = x(e Vr*)in (24), i.e.,

S

plry) u(rs) u(ry)
> > > DK > ____%_
T T % Om—1 — 7 % (25)
S is said to generate a terminal string x by the productions 7, r,, ..., Fp. In
general, there is more than one weighted derivation chain from S to x.

Now, we shall obtain various kinds of grammars by adopting the appro-
priate algebra system as the weighting space M of a weighting function u:
J— M of a pseudo grammar PSG, and by performing the corresponding
operations to u(r)’s.

[I1 Us Grammar (=U*G)}

(I-a): Let the weighting space M in PSG be the complete lattice ordered
semigroup L, namely, the weighting function p is

p:J— L.

In this case, u can be regarded as the membership function of an L-fuzzy set
in J.

(I-b): The grade of the generation of x in V;* by L*G, which is denoted
as puy»c(x), 1s given by using the concept of the product of L-fuzzy relations of
(8) and by the weighted derivation chain from S to x of (25). Clearly, py+(x)
isin M (=L),

pusc(x) = U [u(ry) * p(ry) * - - * p(ry)), (26)

where the lub U is taken over all the weighted derivation chains from S to x.

T As special cases of U*G, there are [II] UNGrammar, [XI] Max-Weighted Grammar,
and [XII] Max-Probabilistic Grammar, which are defined later.
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[II] UM Grammar (=UNG)}

(II-a): The weighting space M is the complete distributive lattice L', that s,

w is
pwJ—L'.

(II-b): The grade pung(x) of the generation of x in V;* by UMG is given
by using the product of L-fuzzy relations of (9):

punc(x) = U [ulry) T p(r2) 1= T p(ra)), 27)

where Ll is taken over all the weighted derivation chains from S to x.
[III] MU Grammar (=NUG)}

(II-a): This is the same as (II-a).

(ITI-b): The grade pn(x) of the generation of x is given from the product
of L-fuzzy relations of (10):

“n UG(x) =TI [f"’(rl) U ,LL(FZ) U---u :u'(rm)]9 (28)
where 1 is taken over all the weighted derivation chains from S to x.

Let L’ = B (complete Boolean lattice) in (II-a) and (III-a), then we can
define LIMNG and MUG on B, which may be written as LINBG and MLUBG,
respectively. We will denote the grades of the generation of x by LIMBG and
MUBG as pynes(x) and pwnyss(x), respectively.

[IV] Composite B-Fuzzy Grammar (=CBFQG)

(IV-a): The weighting space M is the complete Boolean lattice B.

(IV-b): The grade pcpra(x) of the generation of x is defined as
peera(*) = (« M punec(x) U (@ M pnuss(x)), (29)

where o € B and &(e B) is the complement of «.
[V] (Pessimistic) Fuzzy Grammar (=PFG), or Maximin Grammar [5,13,14]

(V-a): Let L' =[0,1] in (II-a).

T [V] (Pessimistic) Fuzzy Grammar and [VIII] Ordinary Phrase Structure Grammar are
considered as special cases of UM Grammar.
I As aspecial case of MU Grammar, there is [VI] Optimistic Fuzzy Grammar.
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(V-b): The grade pprs(x) of the generation of x by PFG is given as follows
by using the product of fuzzy relations of (12), in other words, by replacing LI.
by max and I by min in (II-b):

pprc(x) = maxmin [u(r,), 4(r), - - ., plrm)] (30)
where maximum is taken over all the derivation chains from S to x.

[VI] Optimistic Fuzzy Grammar (=OFQG), or Minimax Grammar

(VI-a): This is the same as (V-a).

(VI-b): porc(x) is given as follows by using the product of fuzzy relations
of (13), that is, by replacing 'l by min and LI by max in (III-b):

porc(x) = minmax [u(ry), pl(r2), . - ., pl(Fm)]- (1)

[VII] Mixed Fuzzy Grammar (=MFGQG)

(VII-a): This is the same as (V-a).
(VII-b): pmrc(x) is given as follows:

pmrc(X) = aperc(X) + buors(X), (32)

where a and b are real numbers such that @ + b =1 (cf. [1]), and the subscripts
PFG and OFG denote [V] (Pessimistic) Fuzzy Grammar and [VI] Optimistic
Fuzzy Grammar, respectively.

[VIII] Phrase Structure Grammar (=QG)

(VIII-a): L' ={0,1} in (II-a) or (V-a).
(VIII-b): pg(x)is obtained in the same manner as pprg(x) in (V-b).

Note: In this case the language L(G) generated by G is defined as
L(G) = {x S VT* “.LG(X) == 1}.

[IX] Weighted Grammar (=WG)

(IX-a): The weighting space M is the set of non-negative real numbers.
(IX-b): pwe(x) is given as follows:

MWG(x) = Z’vf“'(rl)'f"(rZ) '''' I‘L(rm)s (33)

where the operations “2”’ and “-”” are sum and product in the ordinary sense,
respectively.
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[X] Probabilistic (or Stochastic) Grammar (=PG) [3,4]

(X-a): M =[0,1], i.e., u(r) € [0,1], r € J and, in addition, u(r) satisfies the
following constraint; For each J,,

> wr)=1,

redy

where J,, is the set of all labels such that the left-hand side of the rewriting rule
in the production of the pseudo grammar PSG is u(e Vy* — {41}).

(X-b): pps(x) is defined in the same manner as pwg(x) in (IX-b) and can
be regarded as the probability of the generation of x by PG.

[XI] Max-Weighted Grammar (=MWG)

(XI-a): This is the same as (IX-a).
(XI-b): We take the maximum instead of taking 2'in (IX-b), i.e.,

taaw () = max [u(ry) p(ra) -+ ()] (34)

It is noted that the expression above can be obtained by replacing LI by
max and * by - in U*G of [I].

[XII] Max-Probabilistic Grammar (=MPGQG)

(XII-a): This is the same as (X-a).

(XII-b): wmpc(X) is obtained in the same manner as pywc(X) in (XI-b).
[XII1] Label Sequence Grammar (=LSG)

(XIII-a): The weighting space M is J*, where J is the set of labels. The
weight u(r), r € J, is defined as

pr)=r, foreach r e J.
(XIII-b): prsc(x), x € Vr*, is given as

prsc(x) =V [u(r) - plry). - p1(rm)]
=V [ryerye e F'mls 35)

where the operations “V” and “-” are union and concatenation of (label)

sequences, respectively. This expression (35) can be obtained by replacing
U by V and * by - in LUxG of [I].
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Note: We could regard u;ss(x) as the set of all the label sequences from
S'to x. Let C be the subset of J*, then the language

Le={xeVr* |#L$G(x) N C # ¢}

can be regarded as the languages controlled by control language C [10].
4. VARIOUS KINDS OF CONDITIONAL GRAMMARS

In this section we define a pseudo conditional grammar (PSCG for short)
as an extension of a pseudo grammar PSG denoted in a previous section and
derive from it several interesting conditional grammars which have or have
not appeared in the existing papers, in the same way as we derived, in Section 3,
various kinds of grammars from PSG.

DEFINITION. A pseudo conditional grammar (PSCG) is a system
PSCG = (Vy, V1, P, S,J, M, {1, 12}, (36)

where Vy, Vr, S, J, and M have essentially the same meanings as those for the
PSG in the previous section. P is a set of the rules with labels as follows:

r)u—v.

1 is a weighting function which is called an initial rule designating function

such that
[.LIZJS—>M, (37—1)

where Jg is the set of all labels whose rules are initial rules. u, is a conditional

weighting function as follows:
palrfr’) € M, (37-2)

where r, r’ € J. py(r/r’) represents the weight of the application of the rule »
given the rule r’ used just before in a derivation.

It is noted that the notion of a conditional weighting function is similar
to that of a conditional probability function.

We shall write u for u, and u, if there occurs no confusion.

If the derivation chain from S to x (e V;*) is

S > o) > %) > > | - X, (38)
r: r2 "m

then the weights u are put over the arrows — as follows:

pcry) u(ra/ry) 1y /tm—1)
S " > 0 rs 0ty > > O _r—_9 X. (39)
m

Now, let us define various kinds of conditional grammars.
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[A] Conditional LI+ Grammar (=CU*QG)

(A-1): The weighting space M in CU=*G is the complete lattice ordered
semigroup L.

(A-2): The grade of the generation of x in V* by CU*G is given as
follows by using the concept of the product of L-fuzzy relations of (8) and
from the weighted derivation chain from S to x of (39):

peurc(x) = U [u(ry) * plrafry) * p(rsfra) * -+ * p(ru/ru-D],  (40)

where the lub Ul is taken over all the weighted derivation chains from S to x.

[B] Conditional UM Grammar (=CLUTMG)

(B-1): The weighting space M is the complete distributive lattice L’.

(B-2): pcunc(x), x € V*, is given from the product of L-fuzzy relations
of (9):
peuna(x) = U [p(r) M u(ry/r) T ==+ 1T p(rm/fmi1)]- (41)

[C] Conditional MU Grammar (=CINUG)

(C-1): This is the same as (B-1).
(C-2): pcnuc(x) is given from (10) as follows:
penuc(x) = I [p(ry) U p(ry/ry) U - U p(tm/rm-1)]- (42)

[D] Conditional Composite B-Fuzzy Grammar (=CCBFG)

(D-1): The weighting space M is the complete Boolean lattice B.
(D-2): pecprs(X) is as follows:
peera(*) = (@ M peunes(®) U (& M penuss(x)), 43)

where « € B and a(e B) is the complement of «, and pcp nes(x) and pcnusc(x)
are the grades of the generation of x by CUMBG and ClUBG, which are
grammars CUMG of [B] and CIMUG of [C] on complete Boolean lattice B,

respectively.

[E] Conditional (Pessimistic) Fuzzy Grammar (=CPFG), or Conditional
Maximin Grammar [13]

(E-1): L'=10,1] in (B-1).
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(E-2): pcprg(x) is given from (12) as follows:
Hoprc(X) = max min [u(ry), p(ra/r1), . . ., p(FmfFrm1)]: (44)

[F] Conditional Optimistic Fuzzy Grammar (=COFG), or Conditional Minimax
Grammar

(F-1): This is the same as (E-1).
(F-2): pcors(x) is given from (13) as follows:
pcora(X) = minmax [u(ry), u(ro/ry), . . ., T/ Tm_p)]. (45)

[G] Conditional Mixed Fuzzy Grammar (=CMFG)

(G-1): This is the same as (E-1).
(G-2): pemrg(x) is as follows:

pemrc(X) = Aucpra(X) + bucora(x), (46)
where a and b are real numbers such thata + 5 = 1.

[H] Conditional Phrase Structure Grammar (=CG)
(H-1): L' ={0,1}in (B-1) or (E-1).
(H-2): poc(x) is obtained in the same manner as pcppg(x) in (E-2).

Note: CG can be regarded as Programmed Grammars with success
fields only defined by Rosenkranz [11].

[I] Conditional Weighted Grammar (=CWG) [2]

(I-1): M s a set of non-negative real numbers.
(I-2): pcwa(x) is given as:

pewa(x) = Zp(r)) - p(ry/r)- - - * WP/ ) (47)
[J] Conditional Probabilistic Grammar (=CPG) [2]

(J-1): M =[0,1] and, in addition, ,u(r) and w(r'/r) satisfy the following
constraints, respectively:
>, mr)=1,

redg

ZJ wr'fr) =1,

where Jy is the set of all labels whose rules are initial rules.
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(J-2): pepa(x) is given in the same manner as pewa(X) in (I-2).
[K] Conditional Max-Weighted Grammar (=CMWG) [2]

(K-1): This is the same as (I-1).
(K-2): We take the maximum instead of taking 2'in (I-2), i.e.,
“’CMWG(X) = max [}L("O'ﬂ(”z/rl) ettt 'p(rm/rm-—l)]' (48)

[L] Conditional Max-Probabilistic Grammar (=CMPG) [2]

(L-1): This is the same as (J-l).‘

(L-2): pempc(X) is defined in the same manner as piemwa(X) in (J-2).

5. CONCLUSIONS AND REMARKS

We have derived various kinds of grammars and conditional grammars
from a pseudo grammar and a pseudo conditional grammar. As an extension
of the pseudo conditional grammar, we can consider the pseudo grammar
whose weight of the application of the rule to be used next is conditioned by
all the rules used in a derivation [14]. In this case, say, in the case of LI*G, the
grade of the generation of x is given as

U [H‘(rl) * H’(rZ/rl) * H‘(r3/rlar2) * ook F’(rm/rl:rb--"rm—l)]'

In the Weighted Grammar of [IX] in Section 3, we adopted the set of non-
negative real numbers as the weighting space M, and the product and the
sum as its operations. In this case, M forms a semiring. Therefore, we hope
that more interesting grammars will be formulated by adopting the appropriate
algebras such as semiring, ring, and field.
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