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ABSTRACT

In this paper, we show: The threshold of fuzzy automata can be changed arbitrarily.
The fuzzy sets of input sequences characterized by fuzzy automata constitute a
distributive lattice, and the complement of the fuzzy set can be characterized by an
optimistic fuzzy automaton.

INTRODUCTION

Among various types of automata, as is well-known, are deterministic,
nondeterministic and probabilistic automata. Recently, W. G. Wee [I] proposed one
another type of automata which he named fuzzy automata. The formulation of fuzzy
automata is based on the concept of fuzzy sets and fuzzy systems defined by
L. A. Zadeh [5, 6]. Fuzzy automata include deterministic and nondeterministic finite
automata as special cases and also have some properties similar to those of probabilistic
automata.

In addition, fuzzy automata may be available, as those applications, to simulating
learning systems such as pattern recognition and automatic control systems [1, 12].

E. S. Santos [4] showed that the capability of a fuzzy automaton as an acceptor is
equal to that of finite automaton,

In this paper, it is shown that the threshold of fuzzy automata can be changed
arbitrarily by changing the values of each element of the fuzzy transition matrix and
the initial state designator. Moreover, the family of the fuzzy sets of input sequences
characterized by (pessimistic) fuzzy automata is closed under the operations of “union”
and “intersection” in the sense of fuzzy set, and the complement of the fuzzy set is
characterized by an optimistic fuzzy automaton.

We show that the similar properties to those mentioned above also hold for
optimistic fuzzy automata.

1. Fuzzy SETs

Fuzzy sets originated by L. A. Zadeh [5] are the classes of objects which do not have
precisely defined criteria of membership.
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410 MIZUMOTO, TOYODA, AND TANAKA

A fuzzy set (class) A in space X = {x} is characterized by a membership
(characteristic) function f4(x), the value of which is in the interval [0, 1] and represents
the “grade of membership” of x in 4. When 4 is a set in the usual sense, f4(x) is 1 or 0
according as x does or does not belong to 4. The notion of fuzzy is completely
nonstatistical in nature.

The definitions of fuzzy sets below are natural extensions of those of the ordinary
sets.

Union. C = AU B < fo(x) = max[f4(), [5(x)]
Intersection. C = A N B < fo(x) = min[f4(x), f5(x)]
Inclusion. AC B < fu(x) < folx)
Complement. A<= fa(x) = 1 — falx)

Moreover, some properties such as De Morgan’s law and the distributive law are
also established. Therefore, fuzzy sets in X form a distributive lattice with a 0 and 1,
but do not form a Boolean lattice, because A is not the complement of 4 in the lattice
sense.

Fuzzy Relation. An n-ary fuzzy relation in X is a fuzzy set 4 in the product space
X X X x -+ X X and is characterized by the membership function f(x; , %5 ..., %),
where x; € X, i = 1,...,n. In the case of binary fuzzy relations, the composition of
two fuzzy relations 4 and B is denoted by A - B and is defined as a fuzzy relation in X
whose membership function is related to those of 4 and B by

fa-s(x, y) = sup min[fu(x, v), f5(2, ¥)]-

Note that the operation of composition has the associative property.

2. Fuzzy AUTOMATA

A fuzzy automaton was proposed by W. G. Wee as a model of pattern recognition
and automatic control systems. An advantage of employing a fuzzy automaton as a
learning model is its simplicity in design and computation. A learning fuzzy automaton
is clearly nonstationary. In this paper, however, we assume a fuzzy automaton to be
stationary and extend the definition by Wee as follows: In Wee’s paper, the initial
state of a fuzzy automaton is given in deterministic way. But we will introduce the
fuzzy distribution, that is, the initial distribution.

Let = be a finite non-empty alphabet. The sct of all finite sequences over 2 is
denoted by Z*. The null sequence is denoted by A and included in Z*. #(S) is the
number of elements in the set S.
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DrrFINITION 2.1. A finite fuzzy automaton over the alphabet 2 is a system

A =S, 7, {F(o) | o€ Z}, 7%,

where

1) S ={s, $5,..., §,} is 2 non-empty finite set of internal states.
15 52 n pty

(2) 7 is an n-dimensional fuzzy row vector, that is, m = (m, , 7, ;... m, ), where
0 <7, 1,1 <7< n, and is called the initial state designator.

(3) G is a subset of S (the set of final states).

(4) 7° = (1, , Ms, »--» M5)’ is an n-dimensional column vector whose 7-th component
equals 1 if 5; € G and 0 otherwise, and is called the final state designator.

(5) For each o € 2, F(0) is a fuzzy matrix of order n (the fuzzy transition matrix of A)
such that F(a) = || f,o(0) 1 <i <, 1<j <.

Let elementfsi,sj(c) of F(o) be f4(s; , o, s;), where s;, s; € S and o € 2. The function
[41s a membership function of a fuzzy setin § X X x S;ie,f: S x ¥ x §—[0,1].
f4 may be called the fuzzy transition function. That is to say, fors, te Sand o€ 2,
fa(s, 6, t) = the grade of transition from state s to state ¢ when the input is o.

The unity fuzzy transition function implies such a transition may exist definitely.

Remark. 1f f, takes only two values O and I, then a fuzzy automaton A4 is a
nondeterministic finite automaton. In addition, only any one element of each row of
matrix F'(c), o € 2'is ““1” and the rest elements of each row are all equal to “0”’. Then
a fuzzy automaton 4 is a deterministic finite automaton.

The grade of transition for an input sequence of length m is defined by an m-ary
fuzzy relation. The fuzzy transition function is as follows: For input sequence
X = 005 " o, EX¥and s, 1€ S,

fals, x, t) = max min S[fA(s’ a1y @) falq1 5 025 Go)sess falmar » Oms )]
4159210+ 1d;—1 &

= the grade of transition from state s to state f when the input

sequence 1s X = 6,0, *** G,y -

DerINITION 2.2. For A, x,ye Z*ands, te S,

1 if s=t
fA(S:A,t)z 0 if s+#¢

fA(s’ XYy t) = max min[fA(sr Xy ‘])LfA(q’ Y t)]'
ges
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Especially, we call a fuzzy automaton with the grade of transition under the operation
“max min” a pessimistic fuzzy automaton (pfa), and a fuzzy automaton under the
operation “‘min max” an optimistic fuzzy automaton (ofa) [3].

DEFINITION 2.3. An optimistic fuzzy automaton over the alphabet 2 is a system
B = (S, ', {F(0)| e €&}, %>,

where S’ is a finite non-empty set (the internal state of B'), #(S') =n'. =" is an n'-
dimensional row vector (the initial state designator). A fuzzy transition function fais
defined as follows: For 4, x,ye Z'* and 5, t € S,

, 0 if s=1t
Fol L) =11 ¢ 524

fo(s, xy,t) = mi?egr}ax[flli’(s: % 9, f5(0 s ),

G’ is a subset of S’ (the set of final states), and an n’-dimensional column vector (the
final state designator) 7% = (7 , My, s ,,)’ is defined such that 7, =0if ;€ G
and 5, = 1 otherwise.

Note that a element of zero in 7" means the definite existence of such a initial state.

In this paper, unless stated especially, by a “fuzzy automaton” we shall mean a
pessimistic fuzzy automaton.

Let us show the fundamental properties of fuzzy matrices.

We denote by a;; the (7, j)th entry of a fuzzy matrix 4, where 0 < a;; < 1. We define:

A< B<a; < by

0=i0l, E=I|1l

C=AoB= C=AxB=<
€y = makain(ai,C , bii) cyy = minkrnax(aac » bs)
lifi=j , , , 0if i =7
I = | my|| where my~ Olflsﬁ_.; I' = || my;|l where my = 1 lfl;—E;

Am+l — Amo A, AO 1 Bm+1 — Bm *> B, Bo =TI

The following fundamental properties are derived immediately from these
definitions:
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Fundamental Properties

1) 0<A<E 1y 0<B<E

2) Ao(BoC)=(A4B)oC 2y A4+«+BxC)=AxB)xC

3 Aol=1I0A4=A4 3" BxI'=1I'xB=RH

“) Ac0=0:4=0 4y BxE=FExB=E

) AP o A1 = Avte, (AP) = Ave (5Y B?+ B! = B¢, (BP) — Bm

(6) if A4<B and C<D, (6) if A<B and C<D,
then Ao C < BoD. then AxC<BxD.

The definitions and the properties shown on the left side of the tables given above
relate to the operation ““o”, and on the right side to the operation “x”’. Moreover, the
operations ‘0" and ““x” correspond to a pfa and an ofa, respectively.

The domain of the fuzzy transition matrix F of a fuzzy automaton 4 can be extended
from 2 to 2* as follows:

DeFINITION 2.4. For x = 0y0, "+ 0, € 2*, 0,6 2 U {A} and 1 < i < m, define
n X n fuzzy transition matrices F(x) by the following,

(1) F(4) =1  (n X nidentity matrix),

(2) F(x) = F(oy) o F(ay) o+ o F(ay).

Let F(x) = [ fo,s ()l 1 <4 << my 1 < j << m, then obviously
Fss (%) = falsis %, 55)-
Now, for 4 = (S, =, {F(o) | 0 € 2}, 7%, define
Sa(x) = 7o F(x) o 4, for xeX*.

f4(x) is designated as the grade of transition of 4, when started with initial distribution
7 over .S to enter into a state in G after scanning the input sequence x. Then a input
sequence x is said to be accepted by A with grade f,(x).

Now, by using the Fundamental Properties mentioned above, we have following
theorems.

Tureorem 2.1. For any n X n fuszy transition matrix F(o), the sequence
F(q), F(0?), F(®),... is ultimately periodic.

Proof. Let T = {fy,fs,...,fi} be the set of all the elements which occur in the
matrix F(g), then the number of different matrices which can be obtained by multipling
F(o) is at most In*, that is, finite,
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Tueorem 2.2, If I < F(c), then
I < F(o) < F(0®) < == < F(o" ) = F(o") = F(c™*) = -

Proof. We can prove our theorem in a similar way in a Boolean matrix [/1].

3. Fuzzy LANGUAGE

E. S. Santos [4] showed that the capability of fuzzy automata as acceptor is the same
as that of finite automata, though fuzzy automata include the deterministic and non-
deterministic finite automata as special cases.

We show that every fuzzy language can be represented in a fuzzy automaton with
any threshold A such that 0 <CA < 1.

DerFINTION 3.1, Let A = (S, m, {F(c) | 0 € 2}, 7% be a fuzzy automaton and A
a real number 0 << A < 1. The set of all input sequences accepted by 4 with parameter
A is defined as

L(A, o, X) = {x | fa(x) > A, x € Z*}.
X is called a threshold of A and L(A4, o, X) a A-fuzzy language. For 0 <A <1, a

language L is A-fuzzy if and only if there exists a 4 such that L = L(4, o, A). A language
L is fuzzy if and only if, for some 4, it is A-fuzzy.

Tueorem 3.1. (Santos, 1968) A-fuzzy language L(A4, o, X) is a regular language.

The same theorem also holds for an optimistic fuzzy automaton.

DerINITION 3.2.  For a fuzzy matrix 4 = || a;; [, 0 < a;; < 1 and d a real number
such that 0 << d < 1, we define a fuzzy matrix A’ = || a;; || as follows:
a = ai,-—{—d if aij\<\l_d
41 otherwise.

|

LemMa 3.1, For two fuszy matrices U and V of same order, let the fuzsy matrices
defined in Definition 3.2 be U’ and V', respectively, then, for two fuzzy matrices
W = || wy | and W' = || w}; || such that W = Uo V and W' = U’ o V', we have that

;o w,,+d if wﬁ-,<\l—d

¥ 1 otherwise.

%3
o

Proof. It is clear from the property of the operation *“o”,
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Likewise, for a fuzzy matrix A = || a;;|| and d’ a real number 0 < d’ ={ 1, define
a fuzzy matrix 4" = |a;; || as follows:
v a;; — d if a;; 2 d

W0 otherwise.

Then a similar result as in Lemma 3.1 holds.

THEOREM 3.2. Ewery fuzzy language is A-fuzzy, for any A such that O < A < 1.

Proof. Let L =L(A,o,p) and let 4 = (S, m {F(o)|oceX}, 7% be a fuzzy
automaton, where F(o) = || f, ,(o)l, # = (7,), 5;,5;€S and oeX. Omitting the
trivial case A = p, we can assuzm’e that A 7 pu. '

(1) For the case of A >> u;

Consider the fuzzy automaton A4’ = {S', #',{F'(0) | 0 € 2'}, %> where S’ = S,
2 =2, 9% =% and the fuzzy transition matrices F'(¢c) = ”fs',.,s,(a)“, o2’ and
7' = (m, ) are defined as follows:

fens(0) = 3{3,».“(0') + A —pw) if fo) <1 —=A+p,

otherwise.

A 27]Tst+()\ "'_' I"") if Tsy ‘gl _A—I—.U"

0, . .
5 otherwise.

Thus, according to Lemma 3.1., for x € 2%,

By oqe — T O E Q) moF@en® <12t
K 1 otherwise.

Therefore, L(A’, o, \) = L(A4, o, u) when A > p.
(2) For the case of A < pu:
Consider the fuzzy automaton 4" = {S”, #", {F"(c) | 0 € 2"}, 7¢")> where §" = S,

2" = X, 7% = 7% and the fuzzy transition matrices F'(¢) = || f; , (o)l where o € 27,
and 7" = (a7, ) are defined as follows:

I R e I P CE
Jsios; 0 otherwise.

0o 7TS|' "_ (‘LL - A) lf ‘n.si 2 F' - /\’

%0 otherwise.
Thus, for x ¢ 2*,

oy oo — (TeF@en® —(u—=2)  if  weF(x)en®=p —2
e Fi(x) e n® = (0 otherwise,
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Therefore, L(4", o, A) = L(4, o, u) when A << pu. Hence, it follows that in both cases
L = L(A', ¢, ) or L{A", o, A), which implies our theorem.
It is easily shown that the same theorem holds for an optimistic fuzzy automaton.

4, CLOSURE PROPERTIES OF Fuzzy AUTOMATA

In this section, we use the concept of fuzzy sets instead of the set of input sequences
with threshold A.

It is shown that a family of fuzzy events characterized by not only pessimistic fuzzy
automata (pfa for short) but also optimistic fuzzy automata (ofa for short) is closed
under the operations of intersection and union in the fuzzy sense. And the complement
of the fuzzy event by a pfa (an ofa) is characterized by an ofa (a pfa).

DerFiNiTION 4.1, For a pfa A = (S, 7, {F(0) | 0 € Z}, 7%, let a fuzzy event be the
fuzzy set in £* which is characterized by f4(x) = m o F(x) o 7¢, where x € Z*.

We denote by [(4, o) the fuzzy event by a pfa 4 and, similarly, by L(B, *) the fuzzy
event by an ofa B,

DrriNiTION 4.2, For two pfa 4, and 4,
4y =Sy, m, {Fyo) | e e 2} 7"
4y = (S;,m, {Fuf0) | o€ T}, 7",
define a min pfa 4, ® A, as follows:

4, ® Ay =<8, 7, {F(o) | e € Z}, 1%,
where

S =8 X8 ={(s5:,8)]%€S5,4e8,,1<i<ml<j<n}

G =G, X Gy, m=#(S,) and n = #(S,). As to the fuzzy transition function
fa,®4, of a min pfa 4; @ 45, define

fA’_@Ag((s’ t)’ a, (9, f)) = min[fAl(s, a, q)szz(ty a, f)]
for (s, 1), (¢, r)eSand ce Z.
Moreover, the mn-dimensional row vector = is defined as follows: For (s;, ¢;) € S,

l<i<mandl <j <,

T = 7."1 ® Ty — (f(ag,t!))
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where
f(s;.t,) = min['ﬂlﬁ ’ "251]
and

(555 2;) = (51, t1)s (515 Bg)yeees (515 )y (S2 5 By)senes (S » Bn)-

And the mn-dimensional column vector % is also 7 = % ® 7%

Hence, the fuzzy transition matrices of order mn of A; ) A, is as follows: For two
pfa 4, and 4,, let Fy(o) = || fst_si(a)H and Fy(o) = || f,k',i(a)ll where o € 2, be fuzzy
transition matrices of 4, and A, , respectively, then fuzzy transition matrices F(e),
ge X of A, ® A, is defined by

F(o) = Fy(0) @ Fy0) = ll fiau.0,.)(9)ll;

where
f(sg.t;,).(s,.t,)(o) = min[fs,.s,(a)’ft;,,t;(o)]
= fa,04,((S¢ 5 1) 0, (85 11))-

Note that the operation ) of fuzzy matrices corresponds to the tensor product of
ordinary matrices.

LemMma 4.1. For fuzzy matrices 4, , Ay, B, , By, A and B, for row vectors m, and
my , and for column vectors ySt and 7%, we have that

(1) (410 By) ®(4y0 By) = (4, ® 4y) ° (B, @ By)

@) (modon™) @ (moBon®) = (m @m)o (4 ®B)o (1™ ®@n™)
= min[m o 4o 7%, my 0 B o 9]

3) A4, ® A4;,m & my,..., are fuzzy matrices.

Proof. Obvious. See [10].

This enables us to prove the following closure theorem.

TueoreM 4.1. Let A, , A, and A, ® A, be pfa as in Definition 4.2 and L(4, , <),
L(A,, ) and (A, ® A, , o) be the fuzzy events characterized by A; , Ay and A, @ A, ,
respectively. Then, in the fuzzy sense,

L4, 0) N L(4y, o) = L(4; ® 4y, ).
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Proof. The membership functions of fuzzy events L(4y,¢), L(4,,°) and
(4, ® 4,, ) are

fAl(x) = my o Fy(x) o 7’01, Ja (%) = a0 o(%) © 7162
and

fA1®Az(x) =7 OF(x) © "'JGv
respectively, where x € 2*. By Lemma 4.1., for x € 2%,
fasoa(®) = moF(x) o 1% = (m @ my) o (Fi(x) @ Fo(x)) o (1" ® 1)
— minfmy o Fy(®) 0 1%, my o Fyx) o 1]
- min[fAl(x)’ ng(x)]'

CoroLLARLY 4.1. For two ofa B, and B,, and LB, , ¥) and L(B, , ) be the fuzzy
events by B, and B, , respectively, then, in the fuzzy sense, there exists an ofa B such that

LBy, %) UL(B,, ¥) = L(B, %).

Proof. In Definition 4.2, by replacing the operation “min” by the operation “max”’
and defining a max ofa, we can easily prove Corollary 4.1.

We have shown that the family of fuzzy events by pfa is closed under intersection
and the family by ofa is closed under union in the fuzzy sense.

Next, we will verify that the family of fuzzy events by pfa (ofa) is closed under union
(intersection) in the fuzzy sense.

THEOREM 4.2. For two pfa A, and A, , let [(A4, , o) and L(A, , <) be fuzzy events by
A, and A, , respectively, then, in the fuzzy sense, there exists a pfa A such that

L(A4,,)uL(4,,0) =L(4,o5).
Proof. Let A4, and 4, be two pfa as follows:
Ay = syy $a s Sy 71, {Fi(0) [0 € 23, 9%
Ay = by ty sy b}y o, (Fo(0) | 0 € 2}, 7%
Now, consider a pfa A, that is,
A = {8 youes Sm » By yeers bn}y T {F(0) | 0 € Z}, 7%

where 7, F(s) and 'qG are given as follows;
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If
Ty == (T s Ty ey s,)  and my = (my ey 7, )
then
T = (g your, 7, Ty goees Tg,) == (My73)s
Moreover,
Fo) = (Féa) F::()o))
and

Gy
n
o= (5)

In general, in fuzzy matrices, we have that

O G 5) 6 5)=("" 525
@ rime (5 )= (Tod) = maxtry e Aoy myo B oo

Therefore, let
fa(®) = m o Fy(x) o n™,  fy(x) = my 0 Fy(x) o n°

and f,(x) = 7 o F(x) o 7% where x€Z* be the membership functions which
characterize fuzzy events (4, , <), L(4,, ) and L(A4, o), respectively.
Then, for x € 2*, we have;
G

1) = e R o1 = () o (757 0 ) (1)
= max[m o Fy(x) o 1%, my o Fy(x) o 7°9]
= max[f4,(x), f4,(%)]-

CoroLLARY 4.2, For two ofa B, and B, , let L(B, , x) and L(B, , ) be the fuzzy
events by B, and B, , respectively, then, in the fuzzy sense, there exists an ofa B such that

L(B,, ¥) N L(B,, ) = L(B, ).
Proof, For two ofa By and B, , that is, )
By = (8, m,{Fyo) | o€ Z}, 1
B, = (S, ,my, {Fy0) | 0 € Z}, 772,



420 MIZUMOTO, TOYODA, AND TANAKA
let us define an ofa B as follows:
B =<8, n,{F(o) | e € X}, 9%

where S = S; U S, , $; NS, = ¢, 7 = (mymy)

F(o) = (F 11§") F}a)) for all o in %,

Gy
6 = (z)

Then, we can prove our Corollary immediately in a similar way as in Theorem 4.2,
We will show the inclusion property of pfa.

THEOREM 4.3. Given two pfa A, and A, as follows:
4y = {8y, m, {Fy(0) | o€ T} 0"
Ay = <8y, my, {Fyfo) | 0 € T}, 7%
If #(S)) = #(S), Fi(o) < Fifo) for all a in 2,
m<m and <%
then, in the fuzzy sense,
L(4,,9) CL(4,, o).

Proof. We can easily show that

Jfa, (%) < fa(x) for  xel*

from the basic properties of fuzzy matrix described in Section 2.
. Obviously, the same theorem also holds for ofa.

We will show the complement of fuzzy event by a pfa (an ofa) is characterized by an
ofa (a pfa).

DerinitioN 4.3. If A = (S, 7, {F(s)| o€ 2}, 7> is a pfa, the complementary
ofa for 4 is defined as

A =<(8,7{F0o)|ceZ}, 1%
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where S = S. As to fuzzy transition function f; of 4, for c€ X, x,yc X* 5, te S
and f, of 4, we define,

fa(s,0,t) = 1 — fuls, o, ),
Fals, xy, ) = mirlleénax[ Fals, 2, 1), fa(l, v, t)]
=1 — fuls, 2y, t),
and the initial and final state vectors are
#=(,1u,1)—m and 7 = (1, 1,.., 1) — 25

Note that we can easily define a complementary pfa B for an ofa B in a similar way.

LemMma 4.2. For a fuzzy matrix U = ||u;ll, let U = ||uy| be a fuzzy matrix
such that

/
uy=1—uy.

For fuzzy matrices U, , Uy ,..., Uy, let Uy, Uy,..., Uy, be fuzzy matrices as defined
above, respectively, then

11
Ulo Uzo“'o Um—{— Ul'* Uzl* e % Um' — ( :)
l...l

THEOREM 4.4. Let A be a pfa and let A be a complementary ofa for A, then, in the
fuzzy sense,

L(4, o) = L(4, *).

Proof. Let A =S, m,{F(0)|oe X}, beapfaand 4 = (S, #{F(s) | 0 € T}, 7>
be a complementary ofa for 4, then by Lemma 4.2, for x € 2%,

Fuls) = moF(E)on® = | — 7 % F() %78 = 1 = fa(x).
Therefore, we have (4, o) = L(4,*).
CoroLLary 4.3. For an ofa B and a complementary pfa B for B, in the fuzzy sense,

L(B, ) = L(B, o).
Proof. Immediately.
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The family of fuzzy events characterized by pfa (ofa) constitutes a distributive
lattice, but does not cunstitute a Boolean lattice clearly.

5. CoNcLusION

The threshold of fuzzy automata can be set arbitrarily by changing the value of each
element of the fuzzy transition matrix and the initial state designator. Moreover, a
family of fuzzy events characterized by pessimistic (optimistic) fuzzy automata is
closed under the operations of union and intersection in the sense of fuzzy sets, And
the complement of the fuzzy event by a pessimistic (an optimistic) fuzzy automaton
is characterized by an optimistic (a pessimistic) fuzzy automaton.
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