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Abstract

In our pre-work, the two sufficient and necessary conditions have been given on Koczy’s interpolative reasoning
method in sparse fuzzy rule bases, to guarantee that the reasoning consequence is of triangular-type if the fuzzy rules and
an observation are defined by triangular-type membership functions. However, the two conditions are too strong to use
the reasoning method on practical applications. In this paper, we analyze the properties of the reasoning method in detail
and give several applicable sufficient conditions on it, in order to make the reasoning consequence always a normal and
convex fuzzy set. © 1997 Elsevier Science B.V.
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1. Introduction

Most of the fuzzy reasoning methods used in fuzzy control and fuzzy expert systems are based on the
compositional rule of inference [9]. In these fuzzy reasoning methods the input universe of discourse is
covered with the rule bases completely, and when an observation is given, a consequence can be calculated by
some proper rules of inference [5, 4]. However, when the fuzzy rule base is sparse, i.c., the input universe of
discourse is covered incompletely with the rule base, there will be an empty space between two neighboring
antecedents, and thus the conventional fuzzy reasoning methods do not work well. Namely, if an observation
comes in the empty space, no rule will be fired and no consequence is derived. To attack this problem, Koczy
and Hirota have proposed a fuzzy reasoning method called a linear interpolative reasoning in [2, 3]. Using
the method, we can obtain the reasoning consequence for an observation flanked by two disjoint antecedents.
However, it was shown in [7, 6] that the reasoning consequences by the method are sometimes funny fuzzy
sets. In some cases, the membership functions of the consequences lose the convexity, and so it is very difficult
to use the linear interpolative reasoning method for the practical applications.

In this paper, we analyze the properties of the linear interpolative reasoning method, and give several
applicable conditions on it, to show that if fuzzy rules A; = B;, A, = B, and an observation A* are defined
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by triangular (or trapezoidal) membership functions, the interpolated conclusion B* will preserve the
convexity. That is, B* is always a normal and convex fuzzy set under the conditions. Furthermore, we can
show that two kinds of applicable conditions are special cases of the reasoning conditions given by Shi et al.
[7,6].

2. The linear interpolative reasoning in sparse fuzzy rule bases

In*“If A;then B;” (i = 1, 2, ..., n) fuzzy rule models, a reasoning consequence can be calculated by means of
the compositional rule of inference [5,4] for a given observation A* in the following:

B* = A*°R,

where © denotes a relational composition, and R is a fuzzy relation representing the set of fuzzy rules.
Usually, in the case of the compositional rule of inference, the input universe of discourse X is supposed to
be covered completely with the antecedents A4; (i = 1, 2, ..., n), i.e. the following relation:

X = () supp(4,)

always holds, where supp(4,) stands for the support of 4;. In other words, supp(4*) < () supp(4,) is always

true. We call such fuzzy rule bases as the dense rule bases [1]. In this case, for any observation A*, we can

obtain the consequence B* using a proper fuzzy relation such as the arithmetic rule by Zadeh [9].
However, if the fuzzy rule base is sparse, i.e. there exists at least a subset X’ of X such that

X' < X — | supp(4y),

then the conventional fuzzy reasoning methods do not work well when the following relation holds for an
observation A%

X' = supp(4*).

As seen in Fig. 1, when an observation A4* is flanked by two disjoint antecedents A; and A,, the
consequence B* would be nothing by the conventional fuzzy reasoning methods.

For such problem, Koczy and Hirota [2, 3] pointed out that the consequence B* should also be flanked by
two consequences By and B,, and proposed a reasoning method named a linear interpolate reasoning, which
is introduced briefly as follows.

Definition 1. Denote the set of all normal and convex fuzzy sets in the universe X; by P(X;). Then for
Ay, A, € P(X)), if the following conditions hold:

inf{A4,,} <inf{A4,,}, sup{A;,} <sup{d,,} Vae(0,1], (1)

then it 1s said that 4, isless than A,, 1.¢. Ay < A4,, where A, and A,, are a-cut sets of 4; and A,, respectively,
and inf{4;,} is the infimum of A;, and sup{A4,;,} is the supremum of A, (i =1, 2).

Definition 2. Let A; and A, be fuzzy sets on the universe of discourse X with | X | < oo, and 4; < 4,, then
the lower and the upper distances between a-cut sets 4,, and 4,, are defined as

dr(A1a Az,) = d(inf{A1,}, inf {A1,}), 2)
dU(Alau AZa) = d(Sup {Ala}a Sup {Az.z})a (3)

where d is Euclidean distance or, more generally, Minkowski distance.
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Fig. 1. The fuzzy reasoning in the sparse rule base. Fig. 2. Linear interpolative reasoning method.

Definition 3. Let A; = B, A, = B, be disjoint fuzzy rules on the universe of discourse X x Y, and 4,, 4, and
B,, B, be fuzzy sets on X and Y, respectively. Assume that A* is an observation of the input universe X. If
A; < A* < A, then the linear fuzzy rule interpolation between two fuzzy rules is defined as

dL(Alow A;k) : dL(A:9 AZa) = dL(Blaa Bz’xk) : dL(B:S BZa)s (4)
dy(A1ae AX):dy(AF, A2,) = dy(By,, B¥):dy(By, By, (5)

where ¢ € [0, 1].
Solving Egs. (4) and (5) using Egs. (2) and (3), we obtain inf{By} and sup{B;} as follows:

L(Alza A;k) inf{BZa} + dL(A:zk’ AZa) inf{Bla}

6
dL(Alw A:) + dL (A;k, AZa) ’ ( )

inf{B¥} = a

sup {B*} _ dy(A1a AY)sup {BZa} + dy(Ay, Az,) sup {Bm} )
* dU (Alaza A:) + dU(A:aAsz) .

Fig. 2 shows a simple explanation of the linear interpolative reasoning method for (4) with the fuzzy rules
and the observation arranged by triangular-type membership functions.

Using the resolution principle [8] for inf{B}} and sup {Bj} with a € [0, 1] given in (6) and (7), we can
obtain the reasoning consequence B* for an observation A* flanked by two antecedents 4; and A4, under
which the disjoint fuzzy rules A4; = B,, A, = B,, and the observation 4* are arranged by any type of
membership functions. Especially, when the disjoint fuzzy rules A, = B,, A, = B,, and the observation
A* are defined by triangular-type (or trapezoidal-type) membership functions, the computation size becomes
very small [2,3]. In this case, we can express Eqs. (6) and (7) in the simple forms.

For example, assume that the left slopes of 4, 4* and A, are denoted as 1/k,, 1/k and 1/k,, and the left
slopes of B, and B, are as 1/h; and 1/h,, and a; = inf{4,,}, a = inf{A¥}, a, = inf{A4;,}, by = inf{By,},
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Fig. 3. Interpolation with triangular membership functions. Fig. 4. Interpolation by the linear interpolative reasoning

method.

b, = inf{B,,} at « = 0, respectively, as shown in Fig. 3. Then, Eq. (6) can be written as follows:

[(k — ky)x + (a — ag)](hao + ba) + [(ky — K)o + (a2 — a)](hyx + by)
(ky — ki) + (az — ay)

inf (B} = y() =

= {[hy(ky — k) + hy(k — ki) + [by(ky — k) 4 by(k — k1) + hi(az — a) + hala — ai)]a

+ [by(ay — @) + by(a — a:)1}/{(ky — ko + (a2 — a4)} (8)

As seen in Eq. (8), inf {B¥} is a hyperbolic function of « € [0, 1] in general. That is to say, the interpolated
conclusion B* would not be a triangular-type membership function even though the rules 4, = B, and
A, = B,, and the observation A* are all defined by triangular-type membership functions. And furthermore,
B* does not sometimes preserve convexity since there occurs such an unusual case that inf{B}} < inf{Bg} (or
sup {B¥} > sup{B}}), or more inf {B}} > sup {B}} as shown in Fig. 4 in which the membership function of
B* is a funny fuzzy set.

In order to make the membership function of B* to be of triangular-type, Shi et al. [7] have given two
sufficient conditions for the linear interpolative reasoning method under which the membership function of
the consequence B* can be guaranteed to be of triangular-type, i.e. two sufficient conditions to guarantee the
linearity and monotonicity of inf{B}}. Furthermore, Shi and Mizumoto [6] have proved that the two
conditions are also necessary conditions which are simply described as follows.

Condition I [7,6]. If two disjoint fuzzy rules A; => B, 4, = B, and an observation A* (4; < A* < A,) are
defined by triangular-type membership functions, and inf{4;,} = ki + a,, inf {A¥} = ka + a, inf {4z} =
koo + az, inf{B,,} = hyo + by, inf{B,} = hy0 + by, respectively, then the interpolated conclusion inf{B}} is
a linear monotone increasing function if and only if the following conditions hold:

k= Bky + (1 — p)ks, )
a = Pa, + (1 — Play, (10

where € [0, 1] is a constant.

Condition II [7,6]. If two disjoint fuzzy rules 4, = By, 4, => B, and an observation A* (4, < A* < A4,) are
defined by triangular-type membership functions, and inf{4,,} = ki« + a,, inf{4}} = ka + a, inf {Az} =
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kyo + az, inf{B,,} = hya + by, inf{B,,} = h,a + b,, respectively, then the interpolated conclusion inf { B¥} is
a linear monotone increasing function if and only if the following conditions hold:

(b2 — by) = y(az — ay), (11)
(b2 — hy) = y(kz — ki), (12)
k> ki — hy/y, (13)

where y > 0 is a constant.

3. Several applicable conditions on the linear interpolative reasoning method

As seen in Fig. 4, the interpolated conclusion B* by using the reasoning method in (6) and (7) does not
always preserve linearity and convexity in general. Especially, it would become an important problem on the
practical applications if the membership function of the consequence B* had lost the convexity. Clearly,
Conditions I and Il mentioned above are too strong to use them well on the practical applications. In order
to use the reasoning method to the practical problems, it will be necessary that the interpolated conclusion
B* should preserve at least convexity under some conditions. For this purpose, we shall discuss several cases
on the applicable conditions of the reasoning method in detail. The following discussions will be focused on
the left sides of the membership functions of the antecedents, consequences and an observation. That 1s, we
only need to discuss their monotonicity. If the left piece of the consequence B* is monotone increasing and its
right piece is monotone decreasing, then we can say that the consequence B* preserves convexity.

Assume k # k, = k,, and h; $# h,, Eq. (8) is written as follows:

y(@) = {[(hy — hy)(k — k;)12* + [(b2 — by)(k — k1) + hy(as — @) + hala — ay)]a
+ [b1(az — a) + by(a — a;)1}/(a, — ay). (14)

Hence, y(x) becomes a quadratic polynomial. We analyze the monotonicity of function y(x) using the slopes
of antecedents and consequences of fuzzy rules and the slope of an observation.

In order to study the monotonicity of y(x) of Eq. (14), the first-order differential and the quadratic
differential of y(«) are given, respectively, as follows:

y'(@) = [2(hy — hy)(k — ky)o + (by — by)(k — k1) + hy(a2 — a) + ha(a — a1)]/(az — a4), (15)
V') = 2(hy — h)(k — ky)/(az — ay). (16)

It is noticed that sgn(y”) = sgn((h, — hy)(k — k,)) because of (a, — a,) > 0. That is to say, the sign of y"(x)
depends on the relation of the sign of (h, — h,) and that of (k — k). In the following, we shall discuss several
different cases about the signs of (h, — h,) and (k — k), respectively.

Casel: h —h; >0, k—k,>0.

In this case, according to Eq. (16), we have a result

y'(2) >0,

for any a € [0, 1]. This means that y'(«) is always a monotone increasing function of a( € [0, 1]). In Eq. (15),
taking a = 0, we get

V' (0) = [(by — b))k — k) + hy(az — a) + hy(a — ay)]/(a; — ay) >0,

because all of the factors satisfy (b, — by) > 0, (k — ky) >0, hy(ar — a) > 0, hy(a — a,) > 0, (a, — a;) > 0.
Thus, for any « € [0, 1], y'(«) > 0 because of its monotonicity. So we have:
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Fig. 5. Interpolation under condition (17). Fig. 6. Interpolation under conditions (18) and (19).

Statement 1: inf{B}} is a monotone increasing function about (€ [0, 1]) if the following condition is
satisfied:

hy—hy >0,k ~k; > 0. (17)

Fig. 5 shows an example under the above reasoning condition, where k; =2, k=3,k, =2,a, =0,a =35,
a,=10h; =1, h, =4,b, =0, b, =9.

Case 2. h, —hy >0, k—k; <0

In this case, according to Eq. (16), we have

V(@) < 0.

This means that y'(«) is a monotone decreasing function. In order to make y(x) a monotone increasing
function on the interval [0, 1], we give a restriction as follows.

First, let y'(1) = 0, then y'(o) = O for any « € [0, 1] because of the monotonicity of y'(«), which shows that
y(a) 1s monotone increasing on the interval [0, 1]. And then, in Eq. (15), taking o = 1, we get

y' (1) = [2(hy — hy)(k — k1) + (by — by)(k — k1) + hi(ar — a) + ha(a — a1)] /(a2 —ay) 20,
1e.,
2(hy — hy)k — ky) + (b; — by)(k — ki) + hy(a; —a) + hy(a—a;)) 20
Rearranging the above inequality, we have
k—ky = —[h(a; —a) + hy(a —ay)]/{[(h; + by) — (hy + b})] + (hy — hy)}.
We notice here that [hy(a; — a) + hy(a — a;)] > 0, {[(hy + bs) — (hy + by)] + (hy — hy)} > 0. Therefore, we
get

Statement 2: inf {B¥} is a monotone increasing function about a( € [0, 1]) if the following conditions are
satisfied:

h, —h; >0, (18)

— [hi(ay — @) + hy(a — aq)]
0>k —k, =>— ) 19
~ > [(hy + b2) — (hy + b)] + (h2 — hy) (19)
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Fig. 7. Interpolation under conditions (20)—(22). Fig. 8. Interpolation under conditions (23) and (24).

Fig. 6 shows an example under the above reasoning conditions, where k; =2, k=1,k, =2,a, =0,a =17,
a,=10; hy =1, h, =4,b;, =0, b, =9.

Case 3: hy —h; <0, k—ky{ >0

In this case, y”(a) < 0. As discussed in Case 2, first it is necessary to add the condition:

— [hi(a; —~ a) + hy(a — a,)]
[(ha + b3) — (hy + b)) + (hy — hy)’

k—ky =

Here, [hi(a2 — a) + hy(a — a4)] > 0 is always true, and if {[(h, + b,) — (hy + by)] + (hy — hy)} > 0 is also
true, then, of course, the condition mentioned above is not necessary. The problem is that if 2(hy — h;) >
(by — by), then {[(h, + by) — (hy + by)] + (hy — hy)} < 0. Thus, we should restrict 2(h; — hy) # (b, — by),
with the condition

hi(a; —a) + hy(a — ay)
(hy = hy) = [(h2 4+ by) — (hy + b1)]

k—ky =

Hence, we have:
Statement 3: inf{B¥} is a monotone increasing function about a( € [0, 1]) if the following conditions are
satisfied:

h, —hy <0, (20)

hi(a; — a) + hy(a — ay)
(hy — hy) — [(hy + b3) — (hy + b))

2(hy — hy) # by — by (22)

k—ky > 21)

Fig. 7 shows an example under the above reasoning conditions, where ky =2,k =3,k;, =2,a, =0,a =5,
a, = 10,]’11 =4, hz = 1, bl =0, bz = 10.

Case 4. h, —h; <0, k—k; <0

In this case, we have from Eq. (16)

y'(e) > 0.
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As in the Case 1, this means that y'(«) is a monotone increasing function about a( € [0, 1]). From Eq. (15), we
have

¥ (0) = [(by — by) (k — ky) + hi(az — a) + ha(a — ay)]/(ax — ay).

Unlike Case 1, y'(0) cannot be guaranteed to be more than or equal to 0, because of (k — k;) < 0. In order to
guarantee that y(«) is a monotone increasing function about «( € [0, 1]), let y'(0) = 0, i.e.

[(b, — by)(k — k1) + hy(a; — @) + ha(a — ay)]/(az — a1) 2 0.
Rearranging the above inequality, we get the condition as follows:
k= kg —[hi(az — a) + hy(a — ag)l/(bs — by).

Therefore, for any « € [0, 1], y'(«) > O because of its monotonicity. We get
Statement 4: inf{B*} is a monotone increasing function about a(x € [0, 1]) if the following conditions are
satisfied: ‘

hy, —h; >0, (23)
0>k —ky = — [hi(a; — a) + hy(a — ay)1/(by — by). (24)

Fig. 8 shows an example under the above reasoning conditions, where k; = 2, k=1k,=2a,=0,a=17,
a,=10;h;, =4, h, =1,b; =0,b, =09.

Until now, we have discussed and given four kinds of conditions in order to make the quadratic
polynomial inf{ B¥} a monotone increasing function of a( € [0, 1]). The similar discussion is possible to the
case of the right sides of the membership functions. For the right sides, if similar conditions as (17)-(24) are
given, then sup{B¥} becomes a monotone decreasing function about a(e [0,1]), and the membership
function of the interpolated conclusion B* preserves convexity.

In the following, we shall discuss two kinds of special cases which are different from the conditions
mentioned above.

4. Two special applicable conditions on the linear interpolative reasoning method

In many cases of the practical application we will hope the fact that if fuzzy rules A, = By, 4, = B, and the
observation A* are defined by triangular (or trapezoidal) membership functions, then the interpolated
conclusion B* given in (6) and (7) is also triangular-type (or trapezoidal-type), because it is very convenient
for an operator to calculate the membership function of B* [2,3]. Unfortunately, we cannot get the above
conclusion immediately without any additional conditions as discussed in the previous discussions. In order
to use (6) and (7), and to make the membership function of B* a triangular-type (or trapezoidal-type), we shall
give two special conditions, one of which is performed by means of restricting the antecedents of fuzzy rules
and the observation, and another is performed by means of restricting the rules.

Case 5: k=ky =k,

The condition k = k, = k, means that all of the slopes of the antecedents and the observation are the same.
According to Eq. (14), we get easily

y(@) = [(a — a1) (hao + by) + (az — a) (b + by)] /(@2 — ay)

and

y() = [(a — aphy + (az — a)h;]/(a; —ay) > 0.
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Fig. 9. Interpolation under condition (25). : ‘ Fig. 10. Interpolation under conditions (26)—(28).

Obviously, y(«) is a monotone increasing linear function about «( € [0, 1]). This is a special case of Condition
I when k, = ky, because in Condition I, k = Bk, + (1 — B)k, is always true for any f( € [0, 1]) under the
condition k =k, = k2 Thus, the condition a = ﬁaz + (1 — B)a, is always met only if a is between a; and a,.
We get

Statement 5:inf{B}} is a linear increasing function on the interval [0, 1] if the condition

holds.

Fig. 9 shows an interpolatioh result under the above reasoning condition, where k; =2, k=2, k, =2,
a,=0,a,=10;h, =4, hy =1,b; =0, bz 10.

Case 6: k1 = kz, hz = hl

~In this case, the slopes of the antecedents are the same, and those of the consequences are so in the fuzzy
rules. According to Eq. (14), we have

[(b2 — by) (k — ki) + hi(az — a) + ha(a — a;)]a + by (az — a) + bya —ay)

y(x) =
a, — a,
[(by — by) (k — ky) + hy(az — a;)Ja + by(az — ) + by(a — ay).
B ' a, —d,

and

y'(@) = (by — bi)(k — ki)/(a; — ay) + hy.

Clearly, y(«) is a linear function on the interval [0, 1]. To make y(x) a monotone increasing, we assume y'(«)
=0, 1e.

(by — by)(k — ky)/(az —ay) + hy =0
Rearranging the above inequality, we get the condition
kzky —hy(by — by)/(a; — ay).
Let (b, — by)/(as — ay) =y, then the above inequation becomes
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This is a special case of Condition Il when h, — hy = k; — k; = 0.In Condition I, h; — hy = y(ka — ky) 18
always true for any y(> 0) under the condition k; = k, and h; = h,. Thus, of course, there is a y that meets
equation b, — by = y(a, — ay).

Statement 6: inf{B}} is a linear increasing function on the interval [0, 1] if the conditions

kl = k2’ (26)

h, = hy, (27)

kzky—hi/y (y>0) (28)
hold.

For example, let ky =3, k, =3,a;, =0,a, =10;h; =4, h, =4,b; =0,b, =9 and k = 2, a = 6, then the
conclusion of the interpolation under the above conditions is shown in Fig. 10.

Tt is noted that the similar discussion holds for the right sides of the membership functions. If similar
conditions as (25) or (26), (27) and (28) are given for the right sides, the membership function of the
interpolated conclusion B* will be of triangular-type (or trapezoidal-type).

In Sections 3 and 4, the discussions are made on the left sides of the membership functions and six different
cases are given. The discussion on the right sides of the membership functions has the similar conclusions.

5. Conclusion

In this paper, we have given several conditions that the membership function of the interpolated
conclusion B* obtained by the interpolative reasoning method can preserve convexity or be triangular-type
(or trapezoidal-type) when fuzzy rules A, = B;, 4, = B, and an observation A* are given by triangular (or
trapezoidal) membership functions.

Though there are such sufficient conditions, it is still limited in the practical application of the above
interpolative reasoning method. It will be necessary to find out new interpolative reasoning methods which
can guarantee that for a triangular-type (or trapezoidal-type) observation, the interpolated conclusion will
also be a triangular-type (or trapezoidal-type). Further, it will be interested in searching a new fuzzy
reasoning method in which if fuzzy rules 4, = B;, A, = B, and the observation A* are defined by normal
“convex” fuzzy sets, the interpolated conclusion B* will also be normal “convex” fuzzy set.
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