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Abstract

In the sparse fuzzy rule bases, conventional fuzzy reasoning methods encounter difficulties because of the lack of
inference evidence. To tackle this problem, Koczy and Hirota have proposed a fuzzy reasoning method called a linear
interpolative reasoning method. In this paper, we analyze the Koczy and Hirota’s reasoning method and find that the
reasoning consequences by this method sometimes become abnormal fuzzy sets. The conditions of the reasoning method
are also discussed analytically.

Keywords: Fuzzy reasoning; Interpolative reasoning; Linear interpolation; Sparse fuzzy rule bases

1. Introduction

All of the present methods of fuzzy reasoning are based on the compact rule bases [5, 6,8-10,11]. In these
fuzzy reasoning methods the input universe of discourse is covered by the rule bases completely, and when an
observation occurs, a consequence can be derived by some proper rules of inference. When the fuzzy rule
bases are sparse, that is, the input universe of discourse is covered incompletely by the rule bases, there is an
empty space between two membership functions of antecedents, and thus the conventional fuzzy reasoning
methods encounter difficulties because of the lack of inference evidence. If an observation occurs in an empty
space, no rule will be fired and thus no consequence is derived. To tackle this problem, Koczy and Hirota
[3.4] have proposed a fuzzy reasoning method called a linear interpolative reasoning.

In this paper, we analyze the property of their method and show that the reasoning consequences by the
method sometimes become abnormal fuzzy sets. Especially, we prove that the statement “If fuzzy rules
A, = By, A, = B, and the observation A* are defined by triangular membership functions, the interpolated
conclusion B* will also be triangular-type” stated in [3,4] is improper. Two kinds of reasoning conditions of
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the method are given in order to show that the interpolated conclusions are given as triangular-type
membership functions.

2. Fuzzy reasoning problem on sparse fuzzy rule bases

As for a fuzzy reasoning problem, we have the following Tomato Problem proposed by Mizumoto and
Zimmerman [10].
We can have a proper reasoning for the fuzzy reasoning:

Antecedent 1: If a tomato is red then the tomato is ripe.
Antecedent 2: This tomato is very red.

Consequence: This tomato is very ripe.

However, difficulty arises in the following reasoning:

Antecedent 1: If a tomato is red then the tomato is ripe.
Antecedent 2: If a tomato is green then the tomato is unripe.
Antecedent 3: This tomato is yellow.

Consequence: 777

What would be the consequence? Intuitively, one would have the consequence that the tomato is half ripe
when it is yellow. But the consequence would be nothing according to the conventional fuzzy inference
methods. This problem can be represented as in Fig. 1.

Koczy and Hirota have looked into this problem and proposed a method named a linear interpolative
reasoning, which is stated briefly as follows [3,4].

Firstly, we have the following definitions.

Definition 1. Denote the set of all normal and convex fuzzy sets of the universe X; by P(X;). Then for
Ay, A4, € P(X)), if Va e (0,1] the following conditions hold:

inf{4,,} <inf{A,,}, sup{A;,} <sup{A4s,},

then A, 1s said to be less than A,, that is, A, < A,, where A4,, and A4,, are a-cut sets of 4; and 4,,
respectively, and inf{4;,} is the infimum of 4;, and sup{A4;,} is the supremum of 4;, (i = 1,2).

Definition 2. Given a fuzzy relation R . = {(A;,4;)| A\, A, € P(X), A; < A,}, if fuzzy sets A; and A, satisfy
R _, the lower and the upper fuzzy distances between 4 and A4, are defined as follows, by using the resolution

green yellow unripe halfnpe

NANA]

Fig. 1. Fuzzy reasoning assumption of the Tomato Problem.
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principle [3]:

di(Ay, A3):R . — P([0,1]),

Ui 4y, 40(0) = > a/d(inf{A4,,},inf{A4,,});

2e[0,1]

dy(A;,Az):R . — P([0,1]),

:leU(Al.Az)(é) = Z a/d(sup{Alm}asup{AZa})a

ae[0, 1]

where 0 € [0,1] [3,4], and d is the Euclidean distance, or, more generally, Minkowski distance.

Definition 3. Let A; = B, 4, = B, be disjoint fuzzy rules on the universe of discourse X x Y, and A, 4,
and B, B,, be fuzzy sets on X and Y, respectively. Assume that 4* is the observation of the input universe X.
If A, < A* < A, then the linear fuzzy rule interpolation between R; and R, is defined as

d(A*, A,):d(A*, A,) = d(B*, B,):d(B*, B,). (1)

Definition 4. Let A; and 4, be fuzzy sets on the universe of discourse X with | X| < oo, then the lower and
the upper distances between a-cut sets A, and A,, are defined as

di(Axs Azy) = d(inf{Am}, inf{Aza}): (2)

dU(AlasAZa) = d(sup{Ala}’ Sup{AZa})- (3)

From Definitions 2 and 4 and resolution principle of fuzzy sets, the fuzzy rule interpolation given in (1) can
be redefined as

dL(A;ko Alz) : dL(A;k, AZoc) = dL(B;ka Blot) . dL(B::: BZa)s
dy(Af, Ay,) du(Ay, Ay,) = dy(By, By,) 1 dy(By, B,),
which can be rewritten as

dL(A;zka Ala)inf{BZa} + dL(A::’ AZa)inf{Bla}

e
inf{ B} du(AF, Ay,) + du(AF, Az) ’

(4)

dy(A¥, A1z)sup{Ba,} + dy(A¥, Az, )sup{Bi,}

Bl =
sup{B;} dy(AF, Ay,) + dy(A¥, Az,)

(5)

The authors of [3,4] claim that the following statement holds by this linear interpolation method.

If fuzzy rules A, = B, and A4, = B,, and the observation A* are defined by triangular membership
functions, the interpolated conclusion B* is also the triangular type.

We have, however, found some different conclusions as [3,4]. The detail is described in the following
sections.
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3. Discussion on the fuzzy interpolation method

In Eq. (4), let

dL(A::: Ala)

M = , 6
dL(A:S Ala) + dL(A;"AZa) ( )

dL(A;k: AZa)

N = ,
dL(A;ka Ala) + dL(A;ks AZa)

then Eq. (4) can be rewritten as
inf{B}} = Minf{B,,} + Ninf{B,,}. (8)

From the equation, inf{B}} seems to be the linear combination of inf{B,,} and inf{B,,}. But one finds
that the coefficients M and N are not constants but variables with « as inf{B,,} and inf{B,,}. This implies
that inf{B}} is not always linear with respect to inf{B,,} and inf{B,,}.

We shall get the interpolated conclusion by the method of Koczy and Hirota more precisely. Fig. 2 shows
the example of fuzzy interpolation when rules 4; = B, and A, = B,, and the observation A* are all defined
by triangular-type membership functions.

The left sides of triangular membership functions of fuzzy sets 4,, A,, A*, B; and B, can be given as

p=1/ki(x —ay), pu=1/ky(x—ay),

p=1/k(x—a), p=1/h(y—b1),  p=1/h(y — b2),
where

a, =inf{A,}, a, = inf{A4,,}, a = inf{ A%},

b, = inf{B,,}, b, = inf{B,,}

at o = 0. 1/kq, 1/k,, 1/k, 1/h; and 1/h, represent the slopes of left sides of the membership functions.

A, A,
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Fig. 2. Interpolation with triangular membership functions.
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Thus, we have the following:

x=kpu+ay, 9)
X =k + ay, (10)
x=ku+a, (11)
y=hp+ by, (12)
y=hou+ b, (13)

where p € [0,1].
Assume that the left side of the membership function of the consequence fuzzy set B* is represented as

y=y(p (14)

in the form of a reverse function. Then the function (14) is deduced by using the interpolation method in the
previous section as follows.
For all « € [0, 1], we have

inf{A;,} = ko + a;, (15)
inf{A,.) = koo + as, (16)
inf{A4¥} = ka + a, (17)
inf{B,,} = hya + by, ' (18)
inf{B,,} = hyo + b,. (19)

Substituting Egs. (15)—(19) into (4), we get

s = (52} = A
_ [(k — ki)a + (@ — a)](hox + by) + [(ka — K)a + (a2 — @) (M + by)
(ky — ki) + (a; — ay)
{Lhilky — k) + ha(k — ky)Jo® + [by(ks — k) + ba(k — kq) + hi(az — a)
+ hy(a — ay)]o + [by(a; — a) + byla — a4)]}

- Ko — ko + (@ — a1) : (20)

As seen from Eq. (20), y = y(2) is a non-linear relation of o in general. Since a(x € [0, 1]) is arbitrary,
y = y(u) is a non-linear function of y. That is, if fuzzy rules A, = B; and A, = B, are defined by triangular
membership functions and the observation is defined so, the membership function of the consequence fuzzy
set B* derived by the above interpolation method is not always of triangular type.

As a special case, assume k; = k, # k, and h; # h,, then Eq. (20) becomes

[(hy — hy)(k = ky)]a® + [(by — bi)(k — ki) + hy(a; — a)
+ hy(a —ay)}a + [bi(ay — a) + ba(a — ay)]

21
@ —ay) @y

y(o) =

which indicates that y(x) is a second-order function of a.
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Fig. 3. Example of fuzzy interpolation.

We shall next prove that the fuzzy interpolation reasoning method cannot always guarantee B* to be
convex fuzzy set.

As a simple example,leta; = 0,a, = 11,a=7,b; =0,b, =10, k; =5,k =2,k =1,h;, =2and h, = 1 as
shown in Fig. 3, then we have from (20),

y(a) = 2a? + 250 — 70)/(30 — 11). (22)
When « is 0 and 1, we obtain

y0) =18,  y(1)=%; (23)

obviously, y(1) < y(0), i.e., inf{Bf} < inf{B¢}, which indicates that the membership function of B* is an
abnormal fuzzy set, as shown in Fig. 3.

In some cases, the membership function of consequence B* can be of triangular type. In the next section,
we shall obtain two reasoning conditions for the fuzzy interpolation under which the membership function of
consequence B* can be guaranteed to be triangular type. The following are sufficient conditions to guarantee
the linearity of inf{B¥}.

4. Conditions of the interpolation reasoning method

Condition I. In Eqgs. (6) and (7), if inf{A¥} is such that the coefficients M and N become constants, then the
consequence inf{ B} of (8) will be a linear combination of inf{B,,} and inf{B,,}.

Let

dL(A:, Ala)

M =
dL(A;ksAla) + dL(A:zkaAZa)

= Ba ﬂE[O,lj,

be a constant; then substituting (15)—(17), the above equation becomes

(k —ky)u+(a—a)

M= ko T @ —ay)

=B, (24)
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which requires (k — k;) = B(ks — ky), and (@ — a,) = B(a, — a;), that is, k and a of A* are obtained as

k= Bk, +(1 — B)k,, (25)

a=Pay, + (1 — pa,. (26)
In this case, y(a) of (20) becomes a linear function such as

y(@) = [Bh2 + (1 — B)hiJo + [ b2 + (1 — f)by]

= {[hi(as — a) + ha(@a — a;)1/(a2 — ay)}ou + [bi(az — a) + by(a — a1)]/(a2 — ay) (27)

and

y'(a) = Bhy + (1 — B)h, > 0. (28)

It is noted that a similar discussion is possible for the right sides of the membership functions. Therefore,
conditions similar to (25) and (26) are applied for the right sides. Thus, the membership function of the
interpolated conclusion B* will be triangular type.

As an illustration, let § = 1. When the parameters k and a of inf{ A}} satisfy Egs. (25) and (26), that is

k=5ks + (1 =Dk = (ky + k2)/2,
a=(3a; + (1 —Day = (a, + a,)/2,
we have
inf{B}} = y(a) = [(hy + hy)a + (by + b3)]1/2.
Fig. 4 shows an interpolation result under Reasoning Condition I when k; =3, k; =1, a4, =0, a, = 11;
hy=2,h,=1,b; =0, b, =10.
Condition II. Rewrite Eq. (4) as follows:

dL(BZaa Bla)

inf{B}} = —~~——
ln{ a} dL(AZaaAla)

di(AF¥, A1) + inf{Bm}- (29)

9 10 11 12 13 14y

Fig. 4. An interpolation result under the Reasoning Condition 1.
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If fuzzy rules 4, = B, A, = B> and the observation A* are defined in a triangular type, that is, inf {A1.}
inf{B,,}, inf{A,,}, inf{B,,} and inf{A*} are all linear with respect to a, it requires that

dL(BZaaBla)

CL e T1al o (3> 0
A A >0

is a constant in order to make inf{B*} also linear. Substituting (15), (16), (18) and (19), the above equation
becomes

(hy — hy)o + (b; — by)

(ky — ky)oe + (ay — ay) B

and this requires

(by — by) =vy(az — ay), (30)

(hy — hy) = y(ky — ky). (31
In this case, y(«) becomes a linear function like

y(@) =[hy +y(k —ky)Jo + [by + y(a — a4)]

= {[(az — a)hy + (by — by)(k — ky)1/(az — a1) }o + [bi(az — a) + by(a — a1)]/(az — ay) (32)

and

y'(@) = hy + y(k — ky). (33)

In order to guarantee the monotonicity of inf{ B*} (monotone increasing), it is required, for y'(a) 2 0, i.e.,
hy + y(k — k) = 0, because y = (b, — by)/(a; — a;) > 0, that

k2ky—hfy (34)

holds.
For example, when y =1, let k;, =3, k, =4, a, =0,a, =9, hy =2, h, =3,b, =1, b, =10 and k = 2,
a = 5, then the conclusion of the interpolation under the above condition is

inf{B}} = y(a) = [hy + y(k — k))Jo + [by +y(@—a)]=[2+2 - 3)]Ja+[1 +(5—-0)} = + 6,
where o € [0,1]. This is shown in Fig. 5.

1
1|7
0

Fig. 5. An interpolation result under the Reasoning Condition II.

1 0 11 12 13 14 Y
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A similar discussion is possible for the case of the right sides of the membership functions. If conditions
similar to (30), (31) and (34) are applied for the right sides, the membership function of the interpolated
conclusion B* will be triangular type.

5. Conclusion

We have illustrated that if fuzzy rules A, = B, A, == B, and an observation A* are defined by triangular
membership functions, the interpolation method described in (4) and (5) cannot always guarantee the
membership function of the interpolated conclusion B* to be triangular type.

Furthermore, we have given reasoning conditions under which the membership function of the inter-
polated conclusion can be triangular type.

Although there are such sufficient conditions, it is still limited in practical applications of the interpolative
reasoning method. A new interpolative reasoning method will be needed which can guarantee that the
interpolated conclusion will also be triangular type for a triangular-type observation. Further, it will be
interesting to search a new fuzzy reasoning method where if fuzzy rules 4, = B,, A, = B, and the
observation A* are defined by normal “convex” fuzzy sets, the interpolated conclusion B* will also be
a normal “convex” fuzzy set.
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