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obtained from averaging operators. Self-dual operators are discussed which can be defined by
using t-norms, t-conorms and averaging operators. Finally, symmetric sums are reviewed which
are also self-dual operators. The pictorial representations of these operators are also made.

Keywords: Fuzzy sets; fuzzy connectives; t-norms; t-conorms; quasi-t-norms; quasi-t-conorms;
averaging operators; compensatory operators; generalized compensatory operators; self-dual
operators; symmetric sums.

1. Introduction

In Part I (7] we showed a number of examples of existing and proposed t-norms
and t-conorms and their pictorial representations were made with the aid of a
computer. Moreover, averaging operators were summarized and their pictorial
representations also made.

As the continuation of Part I, this paper proposes quasi-t-norms and quasi-t-
conorms which are derived from t-(co)norms and do not necessarily satisfy the
associativity. Compensatory operators are summarized and generalized compen-
satory operators are newly defined which can be obtained from averaging
operators. Self-dual operators are discussed which can be obtained by using
t-norms, t-conorms and averaging operators. Finally, symmetric sums are
reviewed which are also self-dual operators.

2. Quasi-t-norms and quasi-t-conorms

In the definitions of t-norms [1-5, 7, 9], t-norms T satisfy:
(i) T(x,1)=x, T(x,0)=0;

(i) x' <x", y'<y" = TG, y)sTK",y");

(iii) T(x, y)=T(y, x);

(iv) T(x, T(y, 2)) = T(T(x, y), 2).

0165-0114/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)



46 M. Mizumoto

When T does not necessarily satisfy the associativity (iv), we shall call it
quasi-t-norm. For example, Q(x, y)=xy(x +y —xy) does not satisfy (iv) but
satisfies (i)—(iii). In this connection, we shall define the following operator

0(x, y):

Q@x, y)=T'(T(x, y), S, y)). )
where T' and T are t-norms and § is a t-conorm which is not necessarily dual to
T. Q(x, y) satisfies the~following:

(@) O(x, 1)=x, O(x,0)=0;
(b) xl sx”’ y! -<-y" $ Q(xl, yl) S_ Q(xll, yll);
() Qx, ) =Q(y, x);
(d) Qx, y)<T(x,y).
(a) is shown as follows:
Qx, 1)=T'(T(x, 1), S(x,1))=T'(x, 1) =1x,
Q(x,0)=T'(T(x,0), S(x,0))=T'(0, x)=0.

The monotonicity (b) and commutativity (¢) of Q(x, y) are easily shown. Since
T'(x,y)<xAyand T(x,y)<S(x,y), we have Q(x,y)=T'(T(x, y), S(x, y)) <
T(x,y) A S(x, y)=T(x, y) which shows (d).

De Morgan’s like dual of a quasi-t-norm Q(x, y) = T'(T(x, y), S(x, y)) is called
a quasi-t-conorm and is given by

Q*(x, y)=8'(8"(x, y), T"(x, y)) (2
where S’ is a t-conorm dual to T', and S” and T" are dual to T and S,
respectively. Namely, a quasi-t-conorm Q*(x, y) is derived from Q(x, y) as
follows:
Q*(x: y)= 1- Q(l_x: 1 —y)= 1- T,(T(lﬂx’ 1_y): S(l - X, 1_y))
=1-T'(1-5"(x, y), 1 - T"(x, y)) = $'(S"(x, y), T"(x, y)).

Clearly, if T and S are dual to each other in (1), Q*(x, y) is given as

Q*(x, y)=8'(8(x, y), T(x, y))-

A quasi-t-conorm Q*(x, y) of (2) satisfies the following properties:

(') 0*(x, 0)=x, Q*(x,)=1;

(bl) xl _—<‘x”’ yl Sy” : Q*(xl’ yl) S Q*(x"’ y");

(c) O*(x, y)=Q*(y, x);

(d) Q*(x, y)=S8"(x, y).

In the following, we shall derive some examples of quasi-t-norms Q(x, t) of (1)
and quasi-t-conorms Q*(x, y) of (2).

When T’ = A (min), we have Q(x, y) = T(x, y) since

Qx, y)=T(x,y) A S(x, y) =T(x, y).

Dually, when S’ = v (max), we have Q*(x, y) = 5"(x, y).
In the case of T'(a, b) =a - b (algebraic product), Q(x, y) is given as

Q(x,}’)= T(x: y) 'S(x’ y)
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For example, let T(x, y) = xy and S(x, y) =x v y; then we obtain
Q(x, y)=xy(x v y).
From T(x, y) =xy and S(x, y) =x +y — xy, we have
Q(x, y)=xy(x +y —xy).
Moreover,

+y—2x
e and S,y =iY 20
x+y—xy 1—xy

T(x,y)

(Hamacher product and Hamacher sum, respectively [5]) give the following
Q(x, y):
xy(x +y —2xy)
O, y)= :
Sy )

The three Q(x, y) given above are quasi-t-norms but not t-norms.
Dually, from S’'(a, b) = a + b — ab (algebraic sum),

0*(x, y)=8"(x, y) + T"(x, y) = §"(x, y)T"(x, y)

is derived from (2). If $"(x, y)=x +y —xy and T"(x, y) =x Ay, then Q*(x, y) is
as follows:

Q*x,y)=x+y—xy+(xAy)=(x+y—xy)(x Ay),

which is dual to Q(x, y) = xy(x v y) given above. When S$"(x, y) =x +y ~ xy and
T"(x, y) =xy, we have

Q*(x,y)=x+y—xy(x +y —xy).

This is dual to xy(x +y — xy). It is noted that this quasi-t-conorm Q*(x, y) and its
dual quasi-t-norm Q(x, y) satisfy

Ox, y) +Q*(x,y)=x +y.

Moreover, S"(x, y) = Hamacher sum and T"(x, y) = Hamacher product give the
following Q*(x, y):

_ 4y —20y) +xy(1 - xy)
(x+y —xy)(1=-xy)

Finally, when T'(a, b) =0 v (a + b — 1) (bounded product) in (1), Q(x, y) is as
follows:

0*(x,y)

Q(xs }’)=0 v (T(x) y)+S(x’ .Y) - 1)
For example, for Hamacher product and sum we have

_Ovix+y—2xy)x+y—1)
N e =

which is a quasi-t-norm but not a t-norm. For T(x, y)=x Ay, xy, 0Ov (x +y — 1)
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Fig. 1. Examples of quasi-t-norms Q(x, y) (left) and quasi-t-conorms Q*(x, y) (right).
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Fig. 1 (continued).

and their duals S(x,y), we have Q(x,y)=0v (x +y—1) which is bounded
product.
Dually, when S’(a, b) =1 A (a + b) (bounded sum), $”=Hamacher sum and
" = Hamacher product,

Q*(x, ) =1A(S"(x, y) + T"(x, ¥))
(x + ) +xylry -3 +y) - 1]
(x +y—xy)(1—xy)

The above examples of Q(x,y) are all quasi-t-norms but not t-norms, and
Q*(x, y) are also quasi-t-conorms but not t-conorms, since they do not satisfy the
associativity. These examples of quasi-t-norms Q(x,y) and quasi-t-conorms
Q*(x, y) are shown in Figure 1.

In a way similar to the cases of quasi-t-norms and quasi-t-conorms, we can
define an operator

=1A

A(x, y)=T(Ti(», y), Tx(x, y)) (3)
and its dual
A*(x: .Y) = S(Sl(xr }’), Sz(x: y)) (4)

where S, S, and S, are t-conorms dual to t-norms T, T;, and T, respectively.
A(x, y) and its dual A*(x, y) satisfy the following properties:
(a) A(x, 0)=A(0,x)=0, A*(x, 1)=A*(1, x)=1,
A(x, 1) =A@, x)=T(x, x), A*(x, 0)=A%*0, x)=S(x, x);
(b) xl sx"’ yl "<-y" $ A(xl’ yl) -<‘A(x", y")
> A*,y)SAG, Y
(c) A(x, y)=A(y, x), A*(x,y) =A%y, x);
(d) A(x, y)sTi(x, y) AT, y)<x AY,
A*(x’ y);SI(x! Y) v SZ(x’ y)?’x vYy;
(e) A(x, y) and A*(x, y) are not necessarily associative.
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For example, let T(a, b) = ab, Ti(x, y)=xy and Ty(x, y) =x Ay in (3); then
Ax,y)=xy(x AY)
and its dual is
A*x,y)=x+y—xy+xvy)—(x+y—xy)xvy)

Furthermore, we can give an operator

B(x, y)=S(Ti(x, y), T(x, y)) (5)
and its dual

B*(x, y) = T(S5:(x, y), Sa(x, ¥)) (6)
where T, S, and S, are dual to S, T; and T, respectively. They satisfy the
following:

(a) B(x,0)=B(0,x)=0, B*(x,1)=B*(1,x)=1,
B(x, 1)=B(1, x) = 5(x, x), B*(x, 0)=B*(0, x) = T(x, x),
(b) B(x, y) and B*(x, y) are increasing and commutative;
(C) B(x’ y)’:: Tl(x) Y) Vv T2(x) y): B*(x) )’)‘<-S1(x: y) A SZ(x: )’),
(d) B(x, y) and B*(x, y) are not necessarily associative.
For example, if S(a, b) =a+b —ab, Ti(x, y)=xy and Ty(x, y)=x Ay in (5),
we have
B(x,y)=xy +(x Ay) ~xy(x AY)
and its dual is
B*(x, y)=(x+y —xy)(x v ).

Figure 2 shows examples of A(x, y), A*(x, y), B(x, y) and B*(x, y). These new
operations will be found in the sequel to be useful in generating new compensa-
tory operators, self-dual operators and symmetric sums.

3. Compensatory operators

Recent empirical works [12] indicate that min (A) and algebraic product (-) are
not very appropriate to model the human use of the ‘and’. The compensatory
operator, which seems to be more adequate in human decision making, is defined
by Zimmermann [12] as follows.

)P (x+y—xy)F, O0sps<Ll

It is possible to define alternative compensatory operators by taking the convex
combination of min (A) and max (v) [13].

xAy)1=p)+(xvy)p, O=<ps<L

In general, we can obtain many kinds of compensatory operators by using
t-norms T(x, y) and t-conorms S(x, y) dual to T'(x, y). For 0=<p =1, we have

C(x, y)=T(x, y)' 7 - S(x, y, (7
C(x,y)=T(x, y)(1—p)+S(x, y)p. (8)
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Fig. 2. Examples of A(x, y), A*(x, y), B(x, y) and B*(x, y) in (3)-(6).

Clearly we have
@) C0,00=0, C(1,1)=1;
(V) T(x, y)(p =0) = C(x’ y)s S(x y)(p 1)
and C(x, y) is commutative, continuous and increasing.
It is found that compensatory operators (x Ay)'™” - (x v y)" and (x Ay)(1—
p) + (x v y)p are averaging operators since they are between x Ay and x v y.
The De Morgan-like dual of compensatory operator (7) is given as

C*x,y)=1-T(A-x,1—y)"?-SA—x,1—y)y
=1-(1-S0,y)'" -1 -T(x y)y ®
The dual of (8) is obtained as follows:
C*'x,y)=1-[T(Q-x,1-y)1-p)+SQ-x,1~y)p]
=8(x, y)(1—p)+ T(x, y)p, (10)

by using the equalities S(x,y)=1—-T(1—x,1~y) and T(x,y)=1—-8(1 —x,
1—y).



52 M. Mizumoto

It is possible in (7) and (8) to use t-norms T'(x, y) and t-conorms S'(x, y) which
are not dual to T(x, y). For 0<p =1,

T(x,y)' ™ S'(x, yY, (11)

T(x,y)1—p)+S'(x, y)p. (12)
For example, Luhandjula [6] gives as a special case of (12)

xAY)A-p)+QAAa(x+y)p, O0=p=Ll

Furthermore, we can define compensatory operators by combining two kinds of
t-norms T'(x, y) and 7'(x, y), or t-cornorms S(x, y) and §'(x, y). For 0=p <1,

T(x,y)' ™ -T'(x, Y, (13)
T(x,y)(1-p)+T'(x, y)p, (14)
Sx, y)' 77 8'(x, yY, (15)
S(x, y)1 —p)+8'(x, y)p. (16)

For example, Sales [8] gives the following operators as special cases of (14) and
(16):

ovx+y—-DI1-p)+(xAyp,

[1AG+)I1-p)+&vyp.
He uses the former as ‘and’ and the latter as ‘or’.

We can give other kinds of compensatory operators by combining t-norms
T(x, y) (or t-conorms S(x, y)) and averaging operators M(x, y). For 0=<p =<1,

T(x,y)' 7 -M(x, y¥, (17)
S(x, y)' 77 - M(x, yY, (18)
T(x,y)(1—-p)+M(x, y)p, 19
S(x, y)(1 —p) + M(x, y)p. (20)

For example, Werners [11] introduces compensatory operators by letting
T(x,y)=x Ay, S(x,y)=x vy and M(x, y) = }(x + y) in (19) and (20):

G- +2p  avpa-p+Ep.

She calls the former ‘fuzzy and’ and the latter ‘fuzzy or’.
We can give the following compensatory operators by introducing two
averaging operators M(x, y) and M'(x, y):

M(x’ y)l_p -M’ (x’ y)p’ (21)
M(x, y)(1-p)+ M’(x, y)p. (22)

Note that the compensatory operators are averaging operators.
In general, we can define compensatory operators by

F(x,y)'™? - G(x, y), (23)
F(x, y)1-p)+ G(x, y)p, (24)
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where quasi-t-norms, quasi-t-conorms, A(x, y), A*(x, y), B(x, y) and B*(x, y) of
(3)-(6), compensatory operators, generalized compensatory operators, self-dual
operators and symmetric sums to be discussed later can be used as F(x, y) and

G(x, y).

A number of examples of compensatory operators are given in Table 1 and
some of them at p = 0.3 are depicted in Figure 3.

In general, compensatory operators C(x,y)=F(x,y)'?-G(x,y)’ and
C(x, y)=F(x, y)(1 = p) + G(x, y)p satisfy the following: For 0<p <1,

(i) C€@©,0=0, CQ11H=1;
i) Cx y)=C(y,x);
(i) x <x",y =y’ > Cx,y)sCx"y"); (25
(iv) C(x, y) is continuous;
(V) Fx ¥)p=-0<sCx y) <G, y)p=1
where F(x, y) < G(x, y) is assumed for x, y € [0, 1].

Table 1. Compensatory operators C(x, y), 0=<p=1

C(x, y) of (7), (8) by t-norms and dual t-conorms

@ « Ay P xvyy @ @&Ay)1-p)+(xvy)p (Zimmermann)
® (' " -(x+y-xyf (Zimmermann) @ w(-p)+(x+y-xy)p
@ v+l lax+y)” @ OvE+y=DIA-p)+[1ax+y)p
C(x, y) of (11), (12) by t-norms and t-conorms
@ @Ay +y-nmf @ &AY1-p)+(x+y—xy)p
3
® @vy)'t-wf @ (xvy)i-p)+xyp
® @Ay P Ayl ® @Ap)A-p)+{la(x+y)lp (Luhandjula)
$
@ vy TOvE+y-1F @ Gvy)1-p)+[0vi(x+y-Dlp
® WA+ ® m-p)+UaE+y)p
3
©® G+y-0)' " Ovx+y-DF @ @+y-x)(-p)+{0v(x+y—Dip

C(x, y) of (13), (14), (15), (16) by t-norms or t-conorms

OvE+y-DI' 7 (xayf [Ov(x+y—DI1-p)+(xay)p (Sales)

[(TA@E+»I1—p)+xvy)p (Sales)
[ovx+y-1I1-p)+xyp

) A+ xvy)
1 PvE+y-DI' " @)

MaG+p] 7 +y—xp)f
(19

[AAG+)I1-p)+&+y—-xy)p
x(d-p)+(xAayp

&) ayy

©-C0-0O-®

B «t+y-'Txvyf (x+y —x)1-p)+(x vyl

The symbol § represents duality. (continued)
continued).
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Table 1 (continued).

C(x, y) of (17), (18), (19), (20) by t-norms (or t-conorms) and averaging operators

- .(x+y)"
2

e

Ay

@vy)

)7 (i%x)p

® ®

P
wry -0 (£57)

®

Ovx+y-n]'"- (x ;y)”

®

- x+y 7
LA+ p’( 2 )
@A) - (VoY
Evy) T N-Va-01 -y
Eap) P n-va-na-y©

vy (Vo)
C(x, y) of (21), (22) by averaging operators

® @0 ® &

®-® -6

R-00-0 ® - @

y

xAy)Q-p)

pd ;y p (Werners)

xvy)l-p)+

+
xy(1-p) +%Xp

(x+y—xy)(1- x;y

[0A(x+y Xy
2

[1A G+l -p)+ 252

(x Ay)(1 - p) + (Vay)p

(xvy)1-p)+[1-V(1-x)(1-y)lp
xAy)(1-p)+[1-V(A-x)1-y)]p

(x vy)1-p)+ (Vayp

V' -1 -Va -0 -yl°

1-p <x+y ny)

) 2-x-y
)1,,

)

)7

+y

H
‘<

® ®®

[

¥
(3
(
(

LN - VADa P
+
xzy (x+y)

(x +y)1_"_(x +y—2xy)"
2 2—-x-—y

C(x, y) of (23), (24) by any functions F and G

®

9:**@; @9

®-®

\/x_(l- )+[1=V(A-x)1-ylp

x+y—2xy
2—-x—-y

2)(1-p)+ (Ve

(1 P+ 14

x+y
2

x+
(3
("T” (1-p)+[1-VA-01-»p
(
(

)
“a-pre(22
Jo-

G yG+y-—' ™ k+y —xyx+y -l

@ Ayl

@ ®

xry—xytxvy—(x+y-x)avy)

[y +x Ay)—xy(x ap)]' ™
i +y —xy)x v )l

y(x +y —xy))(1 - p)
+lx+y—xy(x+y—xy)lp

[xy(x A N1 —p)
+Hx+y—xytxvy—(x+y-—x)xvy)lp

"o Ay) —xy(x Ap)IA -

+Hx+y—xy)x v y)lp
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Fig. 3. Examples of compensatory operators in Table 1 (p =0.3).
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Fig. 3 (continued).



Pictorial representations of fuzzy connectives II

y=.1 o

0 .5 + X 1

O [aGT Polx v )P

1r y=1
y=.
......... y=-.
5r

y=-
y=.

0 . ;

0 .5 - X 1

® (xap! P [xwydr2®

y=.3 /y—O
=.1

0 .5 + X 1

® v ) PLixeydraI?

1
a* [ aGy)(1-pi(x v ¥Ip
[Sales )

®’ (xa y)(A-p)H(x+y)/2]p
{Verners ]

0 5 sx 1

@ (x v Y)A-p)+l{x+y)}/2]p

[Verners ]

Fig. 3 (continued).
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The duals of compensatory operators C(x,y)=F(x,y)' ™ G(x,y)’ and
C(x, y) = F(x, y)(1—p) + G(x, y)p are given, respectively, as follows:

C*x,y)=1-(1-F*(x,y)) " - (1= G*(x, )Y, (26)
C*(x, y)=F*(x, y)(1 —p) + G*(x, y)p, @7

where F*(x, y) and G*(x, y) are dual to F(x, y) and G(x, y), respectively.

For example, the dual of C(x, y)=[0 v (x +y —1)]J(1 ~p) + (x A y)p by Sales
given before is C*(x, y)=[1 A (x +y)](1—p) + (x v y)p. Similarly, for C(x, y) =
(x Ay)QA—p)+3(x+y)p by Werners, we have C*(x,y)=(xvy)(1-p)+
i(x +y)p.

Obviously, the duals of compensatory operators are also compensatory
operators. It is noted that we have

G*(x’ y)(p=1) = C*(xr y) = F*(x’ y)(p=0)

since G*(x, y) < F*(x, y) owing to the assumption of F(x, y) <G(x, y).
As a generalization of compensatory operators, we shall give an operator Cas

C(x, y) = M(F(x, y), G(x, y)) (28)

where M(x, y) is an averaging operator and F and G are t-norms, t-conorms or
averaging operators. It is assumed that F(x, y) < G(x, y) holds. Clearly we have
the property such that F(0,0)=G(0,0)=0, F(1,1)=G(1,1)=1 and Fand G
are commutative and increasing. Any two-place functions satisfying the property
can be used as F and G. For example, quasi-t-norms, quasi-t-conorms, A(x, y),
A*(x,y), B(x,y) and B*(x, y) in (3)-(6), seli-dual operators, symmetric sums
and compensatory operators may be adopted as F and G.

It is shown that C(x, y) contains compensatory operators as special cases.
Namely, let M(x, y) = (x Ay)'™? - (x v y)’, which is a compensatory operator as
well as an averaging operator. Then we have x Ay <(x Ay)' P -(x vyY <xvy
for 0<p <1 so that

C(x,y) = M(F(x,y), G(x, ) =(F(x,y) AG(x,y))' " - (F(x, y) v G (x, y)y’
=F(x, )" - Gx, yY
from the assumption of F(x,y)<G(x,y). Moreover, we have F(x,y)A
G(x, y)=F(x, y) and F(x, y) v G(x, y) = G(x, y) which leads to
F(x,y)<F(x, )™ G(x, y¥ <G(x,y).
In the same way, we can show that compensatory operator F(x, y)(1—p)+
G(x,y)p is a special case of C(x,y) by letting M(x,y)=(x Ay)(1—-p)+

(x vy)p.
In the following, we shall indicate that C(x,y), named as generalized
compensatory operator, satisfies the properties (25) of compensatory operators

C(x, y):
€(0, 0) = M(F(0, 0), G(0, 0)) = M(0, 0) =0,
¢, 1)=M(F(1,1), G(1, 1)) = M(1, 1) =1.
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The commutativity (ii) and increasingness (iv) of (25) are easily proved because
F, G and M are commutative and increasing. Averaging operator M(x, y)
satisfies x A y < M(x, y) =x v y. Thus we have

F(x, y) AG(x, y)<M(F(x,y), G(x,y)) < F(x, y) v G(x, y)

so that

F(x, y)<M(F(x, y), G(x, y)) < G(x, y)
because of the assumption that F(x, y) < G(x, y). Hence we obtain
F(x,y)<C(x,y)<G(x,y)

In the sequel, C(x, y) satisfies the properties of (25).
It is noted that the dual of generalized compensatory operator C(x, y) =
M(F(x, y), G(x, y)) is given as

C*(x, y) = M*(F*(x, ), G*(x, y))

(29)

where M*, F* and G* are dual to M, F and G, respectively.
The dual C*(x, y) is also a generalized compensatory operator and we have

G*(x, )< C*(x, y) S F*(x, y).

We next show several examples of generalized compensatory operators C(x, y)

in Table 2.

When M(a, b) is the arithmetic mean 4(a + b), C(x, y) becomes

C(x, y) = 3(F(x, y) + G(x, y)).

(30)

Table 2. Generalized compensatory operators C(x, y) derived from (28)

@ f%ﬂ in[xy, x vy]

@ Vuyix+y-x) in[xy, x +y — xy]
2 1 + .

&) xx/\/;+1//\\(;+y) in[x Ay, 1A(@x+y)]

@ Zylety - xy) x;;y—x ) in[xy, x +y —xy]
2xy(x +y) .

® 2y :x+y in [xy, 2x +y)]

4xy .

® Ttyiz in [xy, 2xy/(x +y)]

o) 2u0p(x +y —2xy) in[ xy x+X—2xy]
(x+y) +xyley —3(x +y) +1] x+y—xy’ 1-xy
WVay+x+ .

—\/x_y4x ¢ in{Vxy, 5(x +)]

@ fjferitiroof inlxy, x + -~ x7]

®

7 l(xy)’ +2(xvz[

infxy, x vy}
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For example, let F(x,y)=xy and G(x,y)=x vy, then we have Cix,y)=
i(xy + x v y). Clearly, C(x, y) of (30) is a compensatory operator of the form

F(x,y)1—p)+ G(x, y)p for p=0.5.
Similarly, when M(a, b) = Vab, we obtain C(x, y) as
C(x, y) = VF(x, y)G(x, y). (31)
For example, if F(x, y) =xy and G(x, y) =x +y —xy, then Cx,y) is
C(x, y) = Vay(x +y — xy).
C(x, y) of (31) corresponds to a compensatory operator F(x, y)' ™ - G(x, y)’ for
p=0.5.
Let M(a, b) be the harmonic mean 2ab/(a + b); then C(x, y) is given as
2F(x, y)G(x, y)
F(x,y)+ G(x, y)
For example, when F(x, y)=x Ay and G(x, y) =1 A (x +y), we have
2 AYQA A (x+y))
Cx,y)= ( .
xAy+1la(x+y)

Cx,y)=

Further, when F(x, y) =xy and G(x, y) =x +y —xy, C(x, y) becomes

_2xy(x+y —xy)

C(x: Y) - x + y .

In case F(x, y) =xy and G(x, y) =3(x +y), C(x, y) is
2xy(x +y)

2xy +x+y

and if G(x, y) = 2xy/(x +y) then

é(x» y)=

A 4xy
CEN= e

From F(x, y) = Hamacher product and G(x, y) = Hamacher sum, we have

2xy(x +y — 2xy)

€y = (x +y)* +xy[xy = 3(x +y) +1]

Let M(a, b) = C/%(ap + b”) be a quasi-linear averaging operator; then we can
obtain the following generalized compensatory operator:

C(x,y)= </F(x, y)";G(x, y)p, —w<p =<, (32)

where F(x, y)(p——=) < Cx, y)=G(x, ¥)(p—+=) For example, if F(x, y) =x A y and
G(x,y)=x vy, then

C(x,y)= {/(;AY)F;()C vyy _ pxP;yP.
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When F(x, y) =xy and G(x, y)=x +y — xy, we have
.\,/(xy)" Aty —xyf
2 .

Cx, y)=

Examples of generalized compensatory operators C(x, y) are shown in Figure 4.
It should be noted that generalized compensatory operator C(x, y) becomes an

averaging operator when F(x, y) and G(x, y) are averaging operators. Namely,
Cx, y)=M(M'(x, ), M"(x, ) (33)

is an averaging operator, where M, M’ and M" are averaging operators.
Since M, M' and M" are averaging operators, we have x Ay <M(x,y),
M'(x,y), M"(x, y)<x v y. Thus,
x Ay <M'(x,y) A M'(x, y) < M(M'(x, y), M"(x, y))
EMxy)vM'x,y)sxvy
so that )
xny<Clxy)<xvy.
In the sequel, C(x, y) is an averaging operator.
1r y=1 1

0 0
0 5 + X 1
® xy = &y_+im Exvy @ xy S /xylxty-xy) = xty-xy
1 y=1
y=‘5 .5
y=.4 4
-5y y=.3 .3
y=,2 .2
y=.1 it
0 . ‘
0 5o+ x 1 5 + X 1

@ XAY S 2£XA!2£1/\£X+¥2) < 1A(X+y) @ Xy S M = xty-xy

XAY + LA(xty) = Xty =

Fig. 4. Examples of generalized compensatory operators in Table 2 generated from (28).
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0 .5 - x 1
2xy(x+y-2xy)
(x+y)2+xy[xy—3(x+y)+l]

Xy Xty-2xy
between Fyxy and Toxy

1]
1O~ 1 8§
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o oTe T g
w o anwan

Case of y=.5 Case of y=.5
0 | 0 .
0 50+ x 1 0 .5 > X 1
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@ X = X Hoxty-x £ wiy- P p
y 2 XN @ o,y s gxy)+(x2vy) < xvy

Fig. 4 (continued).
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For example, let M(a, b)=14(a +b), M'(x, y) =Vxy and M"(x, y) =1(x +y),
then

A Vey+3x+y) 2Vay+x+y
Clx,y)= > =

4

which is an averaging operator.
We shall next discuss self-dual operators which can be regarded as special cases
of generalized compensatory operators in which M(x, y) = }(x +y). ‘

4. Self-dual operators

We shall next show self-dual operators which can be obtained by using t-norms,
t-conorms and averaging operators. Moreover, we summarize self-dual operators
named ‘symmetric sums’ by Silvert [10].

It is found from (8) and (10) that (8) is self-dual at p = 0.5. Namely, we have
C(x, y) = H(T(x, y) +S(x, ) =1- C(1 —x, 1 - y). Thus,

T(x,y)+S(x y)
2

is a self-dual operator, where T(x, y) is a t-norm and S(x, y) is a t-conorm dual to
T(x, y). Therefore, the following are also self-dual operators:

D(x, y)= (34)

T, y)+1-TA—x,1-y)

D(x, y) > (35)
D,y =SS0 =x 1) )

Self-dual operators D(x, y) satisfy‘the following:
(i D(,0)=0, D(,1)=1,
(i) D(x,y)=D(y,x),
(iii) D(x, y) is continuous and increasing, 37
(ivy D(x,y)=1-D(1-x,1— ¥),
v) D 1-x)=1
For example, let T(x, y)=x Ay and S(x, y) =x v y; then we have from (34),

xAy+xvy x+y
2 2’

D(x,y)=

which is self-dual. Similarly, we can have 4(x+y) from T(x,y)=xy and
0v (x +y —1). As for drastic product x A y and drastic sum x v y (see Table 1 of
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vy=.9
y=.7
y=1 .;'=.5
0y=.3
0<y<1 «y=.1
y=.9
y=.7
y=.5
y=.3 y=0
=.1 .
0 5 =+ X 1

Fig. 5. Self-dual operator D(x, y) = 3(x Ay +x v y) of (38).

[7]), we have the following operator which can be regarded as a self-dual operator
in a limit case (see Figure 5):

ix, y =0,
XAy + 25, x=0,
Ay+xvy
D(x,y)=————={% 0<x,y<1, (38)
%(x + 1)’ y= 1)
W(y+1) x=

From the Hamacher product and sum, we can have a self-dual operator
(x +yP +xyxy —3(x +y) +1]
2(x +y —xy)(1—xy)

As a general case for the Hamacher product and sum, the following self-dual
operator with parameter p is derived from Hamacher’s parametrized t-norm and
t-conorm

D(x, y)

xy g P2 (=2
p+(1—-p)x+y-—xy) 1+(p— Dy
[5], respectively:
D(x, y) = L=PHE +yP+xy[(1—p)ry —B-p)x+y)+1-pl} +px +y)

2[p+ (1 —=p)x+y—xy]1+(p—xy] ’
p=0.

Note that we have D(x,y)=3(x+y) at p=1 (the case of T(x, y)=xy and
S(x, y) =x +y —xy). For Frank’s t-norm and t-conorm [4], we have T(x, y) +
S(x, y) =x +y so that D(x, y) = 3(x +y) here.

We can obtain a number of self-dual operators by using t-norms and t-conorms.
Some of them are listed in Table 3 and their pictorial representations are made in
Figure 6, where self-dual operators are also drawn which are based on Yager’s
and Schweizer (3)’s parametrized t-(co)norms (see Table 3 of Part I [7]).

We can also obtain self-dual operators by introducing averaging operators. Let
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Table 3. Self-dual operators D(x, y) of (34), (39) and (40)

Self-dual operators of (34) by t-norms and t-conorms

@ Gt toby 3ty ]
2(x +y —xy)(1—xy)
@ —(x +y)2+xy(xy +x+y+1)+2(x+y)
22-x—y+xy)(1+xy)

T(x, y) = Hamacher product

T(x, y) = Einstein product

(1 =p){(x +9) +xy[(A=plxy = B—p)x +y) +1=p]} +p(x +y) - . .
® 2p+ (1 —p) +y o1+~ Doyl T(x. y) = Hamacher's t-norm (p >0)

Self-dual operators of (39) by averaging operators M(x, y)

® \/x_y+1—\/§l—x)(1-y) Mz, y)= Vi
(x+y)z—4xy(x +y—1) _ 2y
® S ne-x=y M =335
® (/r(x’ +y)+1— ¥ (1 -x +(1—y)) M(x, y) = Quasi-linear
2 averaging operator
- 1 .
D (xay) P.(xvy)"+1—(1—2x/\1—y) P.1-xvi=yf MG y) = Ay - vy

Self-dual operators of (40) by any operator F and its dual F*

F(x,y)=xy(x vy)

(x+y—-DEy+1-xay)+1
;

@ (x+y—1)(xy;1—xvy)+1 F(x, y) =xp(x A )

R V2y+1_xy2+l F(x, y)=xy +(x Ay) —xy(x A y)

® CIREELS '2[(1 SAESY LS )4 Fx,y)=(xy)' ™ - (x+y —xy)

M(x, y) be an averaging operator and M*(x, y) be an averaging operator dual to
M(x, y). Then we can define a self-dual operator as follows:

D(x,y)= M, ) J;_M*(x’ ) (39)

Note that this self-dual operator is an average operator (see (33)).

For example, let M(x,y)=3(x+y) and M*(x,y)=3(x+y), we have
D(x, y)=%(x +y). For the harmonic mean 2xy/(x +y) and its dual x +y—
2xy/(2 —x —y), the following self-dual operator can be obtained:

_GHy)’ -4y t+y—1)
2x+y)2-x—y)

From the compensatory operator (x A y)(1—p)+ (x v y)p which is an averaging
operator and its dual operator (x v y)(1 —p) + (x A y)p, we have

D(x,y)=(x AY1-p)+(x vy)P-zi-(x Vy)(l—p)+(x,\y)p=x;y.

D(x, y)
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2 2
xty)“+ -3(xty)+H “(xty)7H xyCxysx+y+ DH2(x+y)
@ @ (gl ® @ 2(2-x-yhxy)(Txy)

[T(x,y) = Einstein product]

© @ 2(:[,,’.',), by Hamacher’s (d) D(x,y) by Yager’s t-norm

0 .5 +x 1 0 .5 + X 1

(e) D(x,y) by Schweizer(3)’s t-nors ) @ fyt 1 '2/(1'x)(l-y)

Fig. 6. Self-dual operators D(x, y) in Table 3 derived from (34), (39) and (40).
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S P=-5

¥ e«p=-=,1,0

2
xty)”- Axy(xty-1 (h) ® D(x,y) by quasi-linear averagin,
& © 2(x+y)(2-x-y) operatory ! s

77”//’ (y=.5)

0 . , 0 .
0 .5 +x 1 0 5 o+ x 1

() ® 0y by Hoo=xan! P CEETET

y=0

0 \ , 0 /

0 .5 + X 1 -0 .5 > X 1

® © (x+y-l)(x§+1-xvy)+l ON §x+y-l)(x;y+1—xy)+l

Fig. 6 (continued).
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eP=.

Enon
[[SII RN |

N
p=0,1

0 .5 + X 1

(m) @ D(x,y) by F(x,y)=(xy)l'p'(xﬂ/-xy)p

Fig. 6 (continued).

On the other hand, from (x Ay)'™?-(x vyl and 1-(1-xAl—-y)' 7 -(1-x
v 1—y) which are dual to each other and averaging operators, we have a
self-dual operator

D(x’y)=(x/\y)1"’-(xvy)"+1—(1—2xAl—y)l"’-(l—xvl—y)"’

which is an averaging operator.

In the same way, we can obtain a number of self-dual operators by using
averaging operators. Some of them are listed in Table 3 and their figures are
shown in Figure 6, in which all of them are averaging operators.

As general cases of (34) and (39) which use t-norms, t-conorms and averaging
operators, we can define a self-dual operator

_F(, )+ F*(x,)
2

by introducing any functions F(x, y) and F*(x, y) which are dual to each other.
As candidates of F(x,y) and F*(x,y), we can adopt quasi-t-norms (1) and
quasi-t-conorms (2); A(x, y) and A*(x, y) of (3)-(4); B(x,y) and B*(x, y) of
(5)—(6); (generalized) compensatory operators and their duals.

For example, let F(x, y) =xy(x v y) be a quasi-t-norm and F*(x, y)=x +y —
xy +(x Ay)—(x+y—xy)(x Ay) be a quasi-t-conorm dual to xy(x v y). Then we
have a self-dual operator

_(xH+y—-Dxy+l-xay)+1
= > .

D(x, y) (40)

D(x, y)

Moreover, if F(x,y)=xy(x Ay) and F*(x,y)=x+y—xy+(xvy)—(x+y—
xy)(x v y), which are dual and derived from A(x, y) and A*(x, y) of (3) and (4),
then

_(x+y—1)(xy+1—xvy)+1
= ) .

D(x, y)
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Similarly, when F(x, y)=xy(x Ay)—xy(x Ay) and F*(x,y)=(x+y —xy)(x v
y), which are dual and obtained from B(x, y) and B*(x, y) of (5) and (6), we
have

(x+y—1Dxvy+1l—xy)+1
DG, )= ; e

We can also use a compensatory operator and its dual as F(x, y) and F*(x, y).
For example, let F(x,y)=(xy)'™?-(x +y —xy)’ and its dual F*(x,y)=1-
[(1=x)(1—y)]"? - (1 —xy), then the following self-dual operator is obtained:
For0=p=]1,

GY) -Gy —xyP +1-[(1-x)A -] 7 - (L —xy)
5 .

Similarly, from a compensatory operator F(x, y) =xy(1—p)+ (x +y —xy)p and
its dual F*(x, y)=(x +y —xy)(1 — p) + xyp, we have

D(x,y)=

xX+y
D(x,y)= —
Generally, from the compensatory operator F(x, y)(1 —p) + G(x, y)p of (24) and

its dual F*(x, y)(1 —p) + G*(x, y)p of (27), we obtain

= [F(x: y) +F*(x’ y)](l _P) + [G(x’ y) + G*(x’ y)]p
2

where F*(x, y) and G*(x, y) are dual to F(x, y) and G(x, y), respectively.

Self-dual operators in the sense of De Morgan’s laws have been extensively
studied by Silvert [10] under the name symmetric sums. He has shown that any
symmetric sum is of the form

glx, y)
gx,y)+g(l1—x,1—y)

where g(x,y) is any non-negative, increasing, commutative, continuous real
mapping such that g(0, 0) =0. For example, t-(co)norms, quasi-t-(co)norms,
A(x,y), A*(x,y), B(x, y) and B*(x, y) of (3)—(6), averaging operators, compen-
satory operators, self-dual operators, symmetric sums and so on can be used as
g, y).

The main properties of symmetric sums are:

(a) S(x, y) satisfies (37).

(b) S(x,1-x)=3for0<x<1.

(c) If g(0,x)=0 for any x, then S$(0,1) is not defined and thus § is not
continuous at the points (0, 1) and (1, 0); otherwise S(0, 1) = S(1, 0) = 4.

Examples of symmetric sums are listed in Table 4. Their figures are in Figure 7
in which symmetric sums are also depicted whose generators g(x, y) are
Schweizer (3)’s, Frank’s t-norms and t-conorms in Table 3 of [7] and the

quasi-linear averaging operator. In this table, ®, @', ®, @, @', ®, ®' are
averaging operators and the others are not averaging operators. It is found that

D(x, y) (41)

S(x, y) = (42)
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Table 4. Examples of symmetric sums S(x, y) of (42)

S(x, y) g(x, y)
XAy
(O Ty
: vy
OB Sy vy
X
1 1—-x—y+2xy e
e _XEiy-xy _
@ 1+x+y—2xy xty-xwy
xy(x +y = xy)
@ 1-x—-y+2uy(x+y—xy) w(x+y—xy)
. x+y—xy(x+y-—xy)
® 1+x+y—2y(x+y—xy) T4y —xy(x+y—xy)
Ov(x+y—-1)
() Ovix+y-1)+0v(l—-x-—y) Ovix+y-1)
' 1Aa(x+y)
@ T erp+iac——p 1A(x+y)
@ xvy x\'/y={;’ i:g,
xvy+(1-x)v(l-y) 1 xy>0,
® = x+y
Vay
O Hrva-aa-n Vo
. 1-V(-x)(1-y) N v
1-V(QA-x)(1-
@ 2—\/(1—-x)(1—y)—\/5 A-x)(1-y)
@ xy2—-x-y) 2xy
x(1-x)+y(1-y) x+y
@ x+y x+y-—2xy
2 2—x-y

these symmetric sums are ordered as follows when x +y < 1:

Ov(ix+y-1) xy(x +y —xy)
Ov(x+y—1)+Ov(1~—x+y)\1—x—y+2xy(x+y—xy)
xy XAy xy2—x—y)

S———————=< < <
T—x—y+2y "V 1wy x@-0)+y(1-y)

_ Vxy . 1-Va-x)(1-y) _x+y
Vay+ V(1 -x)(1-y) 2-V(-x)(1-y)-Vay = 2

< _*VY <xvys xty—xy _ x+y—xy(x+y—uxy)
1+ x—y| l+x+y—2xy 1—-x—-y+2Zy(x+y—xy)
< 1Aax+y) < xvy
IA(x+y)+1AQ2—x—-y) xvy+(1—-x)v(l-y)
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1 'l’y=1
SL 987.6.5432%,;
0 \ . s
0 .5 > X 1 0 5 o+ x 1
ov(x+y-1) _xy(x +y - xy)
@) @ Goay-DOV*Y) ® Q@

1-x-y+2xy(x+y-xy)

1 y=1

=.9

0 5 >x 1

(e) ® _(EQLQTS(% " @& —Dy
" Ixy + [T=00-y)

Fig. 7. Symmetric sums S(x, y) in Table 4.
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o e w1 0 5 s x 1
(g) @’ 1- J(l'x)(l'y)_ ) ® X_;y__

2- S0y - [xy

. » XV i » _XtyXY
iy @ TTITyTl' (1D @ Tixey-2qy

0 N . . .
0 5 X 1 0 50+ x 1
(k) @v X+¥'X¥§X+¥'X!2 ( 1 ) @ lh(x+y)

14xty-2xy(x+y-xy) TAGAHY)HA(2-x-y)

Fig. 7 (continued).
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' =) V
p=l-» /
«P=.5
5t Piio .7
3
O 1
0 .5 > X 1

(y=.5)

Np=.05

0 5 x 1 0 S > X 1.
(0) S(x,y) by Schweizer(3)’s t-norm

(y=.5)

0 E - x 1 0 > x 1

(a) S(x,y) by Yager’s t-conorm

Fig. 7 (continued).

(r) S(x,y) by Schweizer(3)’s t-conorm
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(s) S(x,y) by Frank’s t-conorm () S(x,y) by quasi-linear

averaging operator

Fig. 7 (continued).

If x +y =1 we have the converse inequalities. Particularly, if x +y =1, all these
expressions are equal to 0.5.

Let D(a, b) be a self-dual operator; then we have D(q, b)=1—D(1—a,
1—b) and D(a, b) = D(b, a). From the self-dual operator D(a, b), we can obtain
other self-dual operators D’ as

D'(x, y)=D(T(x, y), S(x, y)), (43)
D'(x,y)=D(M(x, y), M*(x, y)), (44)

where T(x, y) is a t-norm and S(x, y) is a t-conorm dual to T(x, y), and M(x, y)
is an averaging operator and M*(x, y) is dual to M(x, y).

More generally, we can define self-dual operators by introducing any F(x, y)
and F*(x, y) which are dual to each other:

D'(x, y)=D(F(x, y), F*(x, y)), (45)
where F(x, y) and F*(x, y) are operators as in (40).
The self-duality of D’(x, y) of (43) is shown as follows.

D'(x,y)=D(T(x, y), S(x, y)) = D(S(x, y), T(x, y))
=1-D(1-8(x,y),1-T(x,y))
=1-D(T(1-x,1-y),85(A—-x,1—y))
=1-D'(1—-x,1—-y).

Thus D' is a self-dual operator. In a similar way, the self-duality of (44) and (45)
is proved.

For example, since the symmetric sum D(a, b) = (a v b)/(1 + |a — b|) in Table
4 is a self-dual operator, we can have the following self-dual operator by letting
T(x,y)=xy and S(x, y)=x +y —xy in (43):

xyvx+y—-xy)  x+y—uxy
1+xy—(x+y—xy)| 1+x+y—2xy’

D'(x,y)=

oyl
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Pictorial representations of fuzzy connectives II

xyOxty -xy x4y - xy(xdy-x () xy(x+y-xy)
1-x-y+2xy(x+y-xy)Dxy-xy(x+y-xy)] (xty-xy)(@xy-DH1-xy

(e) C1-xy)(x+y-xy)ixy 0 xty-xy(x+y- Xty -xy(x+y-x;
(1-2xy)(x+y-xy)+xy+l ' Lxty-2xy(x+y-xy)Ix+y-xy(x+y-xy)]

Fig. 8. Self-dual operators D'(x, y) derived from (43)-(45).
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which is the same as @' in Table 4. Similarly, from S(x, y)=x vy, 1A (x +y)
and x vy we have the same symmetric sums @', @' and ) in Table 4,
respectively.

Let D(a, b)=ab/(1 —a — b +2ab) which is symmetric sum @) in Table 4, and
let T(x, y)=xy and S(x, y) =x +y — xy. Then we have

xy(x +y—xy)
x+y—xy)(2xy—1D+1-xy’

D'(x, y)=

When T'(x,y)=x Ay and S(x, y)=x vy, we have D'(x, y) = D(x, y) since the
properties (x Ay)(x vy)=xy and (x Ay)+(x vy)=x+y hold. In the case
where M(x,y)=M'(x,y)=4(x+y), we can obtain D'(x,y) from (44) as
follows:

(x+y)
2x+y)Y—4x+y—-1)°

From a quasi-t-norm F(x, y)=xy(x +y —xy) and its dual F*(x,y)=x+y —
xy(x +y —xy), the following self-dual operator is derived by using (45):

D'(x,y)=

xy(x+y —xy)lx +y —xy(x +y —xy)]
l=x—y+2y(x+y—xy)lx +y —xy(x +y —xy)]’
As for D(a, b)=(a+b —ab)/(1+a+ b —2ab) in Table 4, the following self-
dual operator is obtained from T'(x, y) = xy and S(x, y) =x.+y — xy:
(A —xy)(x+y—xy) +xy
A-2y)x+y—xy)+xy+1°

D'(x,y)=

D'(x,y)=

From M(x,y)=M'(x, y) = 3(x +y), we have

x+y)x+y-4)

D,(x’y)=2(x+y)(x+y——2)—4'

F(x,y)=xy(x+y—xy)and F*(x,y)=x+y —xy(x +y —Xxy) give

x+y—xy(x+y—xy)lx+y—xy(x +y—xy)]
I+x+y—2xy(x+y—xy)lx+y—xy(x +y—xy)]’

D'(x, y)=

These self-dual operators D(x, y) which are derived from (43)~(45) are depicted
in Figure 8.

5. Conclusion

We have summarized fuzzy connectives of quasi-t-norms, quasi-t-conorms,
compensatory operators, generalized compensatory operators, self-dual operators
and symmetric sums. The pictorial representations of these fuzzy connectives
have been made with the aid of a computer. These figures of fuzzy connectives,
especially of fuzzy connectives with parameter, will be useful when we use
parameterized connectives in various applications.
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