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Fuzzy Reasoning Methods

Blin (1974) considers a reflexive fuzzy relation satisfying
Eqn. (5) and gives an algorithm for deriving a linear
ordering out of it. Dubois and Prade (1980) relax Eqn.
(5) into min(ug(x,y), pe(y,x))<=0.5 and suggest a
ranking algorithm which searches for inclusion relation-
ships between fuzzy dominated classes.

Saaty (1978) provides a ranking procedure which acts
on fuzzy relations such that

fg(x, ) pz(y, x) = 1 (antisymmetry)

#r(x,¥) ug(y, 2) = pr(x, y) consistency

Here the unit interval is replaced by the positive real
line. Saaty's method consists in finding an eigenvector
of the matrix p, whose rank is always 1. Other tech-
niques for the rank ordering of fuzzily related objects
are devised in Shimura (1973) and Navarrete et al,
(1979). Various fuzzy ordering structures in a math-
ematical setting are discussed in Roubens and Vincke
(1985).

NB: It is patent that the scalar pairwise ranking
indices described in the first part of this article equip a
set of fuzzy numbers with fuzzy ordering relations which
can be processed by the cited methods.
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Fuzzy Reasoning Methods

In much of human reasoning, the form of reasoning is
approximate rather than exact as in the statement:

If a tomato is red then the tomato is ripe
This tomato is very red

This tomato is very ripe

Such reasoning cannot be made sufficient by the infer-
ence rules of classical two-valued logic and many-valued
logic.

To make such reasoning with fuzzy concepts, Zadeh
(1975a,b) first suggested an inference rule called “the
compositional rule of inference” and proposed trans-
lation rules for translating a fuzzy conditional prop-
osition “If x is A then y is B” into a fuzzy relation. Since
then several alternative approaches to that given by
Zadeh for fuzzy reasoning have been presented by
several researchers such as Baldwin (1979a,b), Tsu-
kamoto (1979a,b) and Yager (1980) by introducing
fuzzy logic with fuzzy truth values.

In the following we shall introduce their methods for
fuzzy reasoning in which a fuzzy conditional proposition
“If , .. then . ..” is contained.

Ant1: If xis A thenyis B
Ant2: x is A’ (1)

Cons: y is B’

where x and y are the names of objects, and 4, A’, B
and B’ are fuzzy concepts represented by fuzzy sets in
universes of discourse U, U, V and V, respectively. This
form of fuzzy reasoning can be considered as a fuzzy
modus ponens which reduces to the classical modus
ponens when A’ = A and B'= B.

1. Zadeh’s Fuzzy Reasoning Method

The Ant 1 of the form “If x is A then y is B” in (1) may
represent a certain relationship between A and B. From
this point of view, Zadeh (1975a) proposed a translation
rule called an “arithmetic rule” for translating “If x is
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Fuzzy Reasoning Methods

A then y is B” into a fuzzy relationin U X V. Let A and
B be fuzzy sets in U and V, respectively, then the
arithmetic rule is given as :

Ra =14 x V)@ (U x B)

=foV1A(1_#A(u)+u8(v))/(u: v) (2)

It is noted that the arithmetic rule is based on the
implication rule of Lukasiewicz’s logic, that is,

a-»b=1AN(1-a+b) a,b€|[0,1] (3)

Therefore, it is possible to introduce other implication
rules of many-valued logic systems to a translation rule
for the fuzzy conditional proposition (Mizumoto and
Zimmermann 1982).

a—>b=@Nb)v(1-a) 4)
a—b=a/\b (5)
a—>b={1 ifa<b ®
0 otherwise
a_)b={1 ifa<b *
b otherwise
a—b=(1-a)yvb (8)
a—b=1Abja 9)
a—>b=1—a+ab (10)
a—>b={1 ifa#lorb=1 a1
0 otherwise

The consequence B’ of (1) can be deduced from Ant
1 and Ant 2 by taking the max-min composition (o)
of the fuzzy set A’ and the fuzzy relation Ra (the
compositional rule of inference).

B'=A'oRa=A"-[1AXV)@UxB)] (12)
e (v) = v {a W NADNAQ =~ py () + (o))}
(13)

For example, when A’ = A the arithmetic rule infers
such a consequence as

1+
B*=I——“”—("2/u¢3
J 2

This inference result indicates that the arithmetic rule
does not satisfy the modus ponens which is quite a
reasonable demand in fuzzy reasoning.

Ifxis Athenyis B
xis A

(14)

(modus ponens)

(15)

yis B
However, if new compositions “max-® composition”
and “max-/\ composition” are used in the compositional
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rule of inference, then the arithmetic rule satisfies the
modus ponens of (15). The operations © and /\ are
defined as: For x, y € [0, 1],

Bounded product: xQy =0y (x +y = 1) (16)
x...y=1

Drasticproduct: x Ny =3{y...x=1 17)

0. .. otherwise

Max-© composition () and max-/A composition (A)
are obtained from (13) by replacing /\ by © and A\,
respectively. Using these new compositions, we have at
A=A

B'=AORa=B
B=AARa=B
which shows the satisfaction of the modus ponens of

(15).

Moreover, when A’ are fuzzy sets such as very A,
more or less A, not A, the inference results under these
new compositions are much better than those under
the max-min composition {Mizumoto 1981). Such a
tendency can be observed in the case where the impli-
cation rules of (4)-(11) are used in the translation rules
(Mizumoto 1982, 1985).

2. Baldwin’s Fuzzy Reasoning Method

Baldwin (1979a,b) gives an alternative approach for
fuzzy reasoning using fuzzy logic with fuzzy truth values.

A fuzzy truth value t is a fuzzy set in the truth value
space {0, 1] and is defined by a membership function p,
as

#e:[0,1]—[0,1] (18)

Some of the fuzzy truth values are given by (for
te[0,1]):

i)y =1 (19)

p(=1-1¢ (20)

) = 1, () =12 (21)

Baae() = . (0" = %2 (22)
1 ift=1

Halt) = {0 otherwise (23)
1 ift=90

Halt) = {O otherwise (24)

(t, true; f, false; vt, very true; mlt, more or less true;
at, absolutely true; af, absolutely false).

We shall consider a fuzzy proposition “x is F” with a
fuzzy truth value 7, that is,

(xisF)ist
and reduce this proposition to a fuzzy proposition
xis G

r
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Fuzzy Reasoning Methods

where fuzzy sets F and G are in the same universe of
discourse U. Then the fuzzy set G is given as follows
(truth functional modification):

pe(u) = po(up() (25)

For example, if 7 is true, very true, false, we have
(xis Fistrue e xis F (26)
(x is F) is very true & x is very F (27}

(xis F)is false & xisnot F

Conversely, we derive a fuzzy truth value for a fuzzy
proposition “x is F” when given a (reference) prop-
osition “x is G.” The fuzzy truth vatue 7 of “x is F”
relative to “x is G” is defined by the following (inverse
truth functional modification). :

7 = truth (x is F/x is G)

= _[ - ()t (1) (28)

A more explicit expression for 7 is
pe() =\ o), 1E[0,1]

pp(u) =t

As a simple example, we obtain
truth (x is F/x is F) = true (29)
truth (x is F/x is not F) = false _
truth (x is F/x is very F) = very true (30)

In what foilows we shall explain Baldwin’s method for
the fuzzy reasoning of (1). The consequence B’ of (1)
is obtained by the following.

(a) Using the inverse truth functional modification of
(28), we obtain the fuzzy truth value t, of “x is A”
relative to “x is 4’.” That is to say,

t, = truth(x is A/x is A")

(b) The fuzzy truth values of “x is A” and “y is B” of
(1) are considered as true from (26). Thus, the fuzzy
conditional proposition “If true then true” can be
translated into a fuzzy relation in [0, 1] X [0, 1]
which is obtained by using, say, the arithmetic rule
of (2).

true = true
= (Jtrue X [0,1]) @ ([0, 1] X true)

= J;O . INA(L = (O + TR0

= f LA -t + 9, 5)
[0.1*

The truth value of “y is B” given “y is A” is obtained
by taking the max-min composition “s” of 1, and

(true = true), that is,
Ty = T, ° (true = true)
Bep®) =V, ONAQAA -+ 9} GD)

(¢) Using the truth functional modification of (25}, the
consequence “y is B’” is obtained as

" yisB'e(yisB)is 1,
where
pp (V) = pey (15(0))
As an example, we shall consider the case of A’ = A
and A’ = very A (= A%). When A’ = A, we derive
1, = truth (x is A/x is A) = true . . . from (29)

Ty = true ° (true = true)

1+¢s
= s
J’['ll] 2 /

14 g
a0} = ey (a(e)) = 522
Thus,
B' = f w&,

This inference result B' at A’ = A is equal to (14) and
thus this method does not satisfy the modus ponens of
(15). However, if new compositions “max-O com-
position” and “max-"\ composition” discussed in
Zadeh’s method are used in (31), Baldwin’s method can
also get the consequence which satisfies the modus
ponens. _

When A’ = very A (=A?), the consequence B’ is
obtained as follows.

7, = truth (xis 4/x is very A)
= very true . . . from (30)
1t = very true ¢ (true = true)

J' 3+25—VS+as
= /S
[0.1} 2
Thus,
3+ 2up -V5+4 8
B (D) = e, (5(0)) = +2pg(v) ' +4u,(v)

which is also equal to the result by Zadeh’s method at
A’ =very A (Mizumoto 1981). As was indicated in
the above example, the inference results by Baldwin’s
method are the same as those by Zadeh’s method. In
fact, Tong and Festathiou (1982) show that if u3' is a
subjective mapping, Baldwin’s method is equivalent to
Zadeh’s method and so Baldwin’s method which is
based on fuzzy truth values is inherently redundant and
computationally inefficient.
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As a generalization of the fuzzy modus ponens of
(1), Baldwin (1979b) also investigated fuzzy reasoning
whose antecedents have fuzzy truth values z, and 7,.

Antl: (IfxisA thenyis B)is 1,
Ant2: (xisA')is t,

Cons: y is B’

For this form of fuzzy reasoning, the consequence B’ is
inferred by the following.

(a) Using the truth functional modification of (25), we
obtain new proposition “x is At ” which is equivalent
to Ant 2.

xisAte (xis A)is T,
where
fas () = ,u,z(p!A-(u))

(b) Using (28), the fuzzy truth value 7, of “x is A”
relative to “x is A1” is obtained as

1, = truth (x is A/x is At)
{c) The truth value zof “y is B” given “x is A" is given
by
Tg = T,° T (true = true)
Hey®) = e, O A AN =1+ 5))
(d) The consequence B’ is as follows:
e (v) = pr, (1p(v))

3. Tsukamoto’s Fuzzy Reasoning Method

Tsukamoto introduced a different fuzzy reasoning
method which is also based on a fuzzy logic with fuzzy
truth values,

Let 7, and 75 be fuzzy truth values of fuzzy prop-
ositions “x is A” and “y is B,” respectively, and let
a— b be the implication rule of Lukasiewicz logic, that
is,

a—=>b=1A(Q1—-a+b) abe]|0,l]

Then the fuzzy truth value of “If x is A then y is B”
(A = B, for short) is given by

Tase =1N(1 =1, + 15) (32)

where the operations A\, - and + are fuzzified ones
which are defined by using the extension principle
(Zadeh 1975D).

Introducing «-level sets of these fuzzy truth values,
Eqn. (32) is rewritten as

(Tasp)*=1A(1—15 +7%) (33)
where
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When 7, and 7, .z are given, 7, is obtained by solving
Eqn. (33). Let 7% and (7, 5)* be given as intervals in
[0, 1], say,

75 = [ay, 3], (Tazp)* =lc1, 0]

Then we can obtain by (33)
[a, +¢,—1v/0,1]

t5=1{la,+¢c, - 1V0,a,+¢,~1] a,+c,=1,¢,#1
& 0=<a,+c,<1

(34)
As a simple case, let us assume that t, is normal and -
convex, and 7, 5 is normal and its membership function
is nondecreasing in its domain [0, 1]. Then we have
14 =[a), a;] and (1,.3)* = [c, 1]. From this we obtain
readily t§ as follows, by setting c,=1 and ¢, =c in ¢
Eqn. (34):

c;=1

t¢=[a, +¢c—1y0,1] (35)

Now, we shall apply Tsukamoto’s method to the fuzzy
reasoning of the form:

Antl: (Ifxis Athenyis B)is r
Ant 2: x is A’ (36)

Cons: y is B’

which is a general case of (1).
The consequence B’ is deduced by the following.

(a) Using (28), the fuzzy truth value of “x is A” relative
to “x is A'” is given as

T, =truth(xis A/xis A")

(b) From 1, and 7 (= 7,5 of (36)), we calculate 7, by
using (34) or (35).

(c) The consequence B’ is obtained as
yisB' e (yisB)is 1,
where
e () = tie, (up(v))

As a simple example, we shall consider the case of °
7 =true. When 7 = true, (36) reduces to the fuzzy
modus ponens of (1). When A’ = A, we have

T, = truth (xis A/x is A) = true

a-level sets of 7, (=true) and 7 (=1,.,) = true are
given as

ti=[a1],
From (35}, t§ becomes
tf=la+a—-1v0,1)=[2a-1v0,1]
Thus,

¥ = [a, 1]
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Hence

B - L 1+ ;;B(v)/v

The consequence B’ is equal to (14) but not equal to B,
and hence this method does not satisfy the modus
ponens of (15).

When A' = very A, the consequence B’ is as follows.

t, = truth (x is A/x is very A) = very true
% = very true® = [V, 1], 7% = true? = [a, 1]
3= [Va+a—-1yv0,1]

3+25—V5+4s

2 fs

J’ 3 + 2u5(v) — V5 + 4u,(0)
B = ) 5 /v

which is equal to the inference result by Zadeh’s and

Baldwin’s methods (see Mizumoto and Zimmermann
1982).

4. Yager's Fuzzy Reasoning Method

This method is based on a similarity measure and a new
implication rule. We shall be concerned with the fuzzy
modus ponens of (1). The consequence B’ is obtained
as follows.

(a) Let S be a similarity measure of the fuzzy sets A
and A’ in (1), which indicates the degree to which
“x is A” can be derived from “x is A'.” In Yager’s
method two similarity measures are introduced:

\u/ {pa(t) N py (W}
S, =
\H/ ta (u)

(37)

§;= j[o . pa () /14 (0) (38)

The similarity measure $, has crisp numerical values
in [0, 1]. The second measure S, is given as a fuzzy
set in [0, 1] and is based on the compatibility of A
and A' (Zadeh 1975a) which has the same definition
as (28).

(b) In the fuzzy modus ponens of (1), it is natural to
expect B’ = B at A’~ A. Thus, the more similar A’
is to A, the more similar B’ is to B. Therefore, the
larger the similarity is, the more important it is that
“y is B" is satisfied. From this fact, Yager suggested
that the consequence B’ is given as

B' = BS (39)

which is based on a new implication rule proposed
by him, that is,

a—>b=b* (40)

ESC3-I*

When § is a numerical value, B’ is defined as

B® = L us(v)*fo (4

When S is a fuzzy set in [0, 1], BS is raised to a fuzzy set
of type 2 (Zadeh 1975b) whose grades are fuzzy sets in
[0,1]. Thus, the grade ugs(v) is a fuzzy set in [0, 1] and
defined by

tps(v) = j Hs(s)us(v)y  s€[0,1] (42

As an example of the above, firstly we shall consider
the numerical similarity measure S, given in (37). When
A' = A, we have 5, =1 by (37). Thus, from (41} the
consequence B’ is obtained as

B'=B'=B...atA'=A

which indicates the satisfaction of the modus ponens of
(15). Similarly, at A" = very A, we have §, = 1. Hence,

B'=B'=B...atA" =very A

Next, we shall consider the fuzzy similarity measure 5,
of (38). When A’ = A, S, is given from (38) as

S, = J. sfs
0.1)

Thus, the consequence B’ is inferred as
B’ = B%:

pp(v) = I ps,(8)/us(vy  s€[0,1] from (42)

= fs/,ug(v)‘

= J- 108p3(u)2/3 z € [ug(v), 1]

Similarly, when A’ = very A

Sz = J‘ 32/5
[2.1]

pp(v) = ‘[32/1"‘3(”)5 s€(0,1]

= j [l°gug{u)z]2/z z € {pup(v), 1]

It is possible in this method to use other implication
rules in (40). For example, if we use the Lukasiewicz
implication rule of (3), the consequence B’ is given as

wp (@) = 1A = S+ () (43)

For example, when A’ = A, we have §;=1and §, =
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Sio.n5/s. Therefore,
Uy @) = 1AL =1+ pp(v)
= pug(v)...at§, =1
B (D) = INQA =8, + py(v))

‘_'f"z'*'ﬂs(v)'i'l/z

z&fug(v),1]...ats,

5. Mizumoto’s Fuzzy Reasoning Method

The fuzzy truth values of “x is 4” and “y is B” of (1)
are considered to be true from (26). Thus, the fuzzy
truth value of the implication true — true is obtained as
follows by the use of the extension principle (Zadeh
1975b).

true — true = f Mo N Uine)/(t— ) (44)

Thus, the fuzzy truth value 7, for “x is B” given “x is
A’ is obtained as

Tz = T, A (true - true)

where 4 stands for a fuzzified “min” and t, = truth (x
is A/xis A’).

For example, if the implication rule of (3) is used in
(44), the truth value true — true is obtained as

true — true = fum(t)/\#m(ﬂ/(l N1 —t+5))

=[t/\s/(1/\(l~t+s))

= 1A (1 - true + true)
= true '

When A’ = A4, 1, becomes true from (26). Hence we
have 7 as

Ty = true A (true — true) = true 4 true = true

Therefore, we obtain B’ = B by using (25), which shows
the satisfaction of the modus ponens. In the same way,
when A’ = very A, more or less A, not 4, the fuzzy truth
values 7 ; become as follows. Hence, the consequence B’
isiB'=BatA'=veryA; B'=moreorless BatAd' =
more or less 4; B’ = not B at A’ = not A.

T 3 = very true A (true— true)
=very true Atrue =true at A’ =very A
T 3 = more or less true 4 true
=more or less true at A’ = more or less A
T = not true A true
' = not true ( =faise) at A’ =not 4
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See also: Modus Ponens; Generalization
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Fuzzy Relational Equations:
Max-Min Fuzzy Relational Equations
Let

A< X, p,x)y X-[0,1]

BeX, us(y) ¥Y—I[0,1]

be two fuzzy sets, and R(X x ¥) be a fuzzy relation.
Given the composition of 4 with R denoted by 4R
(where o is the max—min operator), then the problem of
finding all the 4 such that 4-R = B, is called a fuzzy
max-min relational equation.
There are different definitions of the composite
operators. More generally, let

PXxY¥), QZ), RXxYx2Z)

be the three fuzzy relations, then the problem of finding
all the P such that PR = @ is called the fuzzy relational
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