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FUZZY REASONING WITH VARIOUS FUZZY
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Abstract. This paper compares inference results of a fuzzy conditional inference
with a fuzzy input A' and a fuzzy conditional A => B under several translating
rules for the conditional A => B by Zadeh, Mamdani and Mizumoto when a fuzzy
input A' is a fuzzy set obtained by attaching to the fuzzy set A a linguistic
hedge such as slightly, sort of, highly and so on. It is shown that the trans-
lating rule Rs proposed before by the author can get reasonable inference results
which fit our intuition. Moreover, a new composition called "max-4 composition"
is introduced and it is shown that the inference results for various fuzzy inputs
A' are better than those under the ordinal compositional rule of inference

which uses '"'max-min composition."
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INTRODUCTION may be viewed as fuzzy modus ponens which re~

In our daily life we often make such an infer-
ence of the form:
Prem 1: If x is A then y is B
Prem 2: x is A' (1)
Cons: y is B'

where A, A', B, B' are fuzzy concepts. . In order

to make such an inference, Zadeh (1975) sug-
gested an inference rule called '"compositional

rule of inference'" which infers B' of Cons from

Prem 1 and 2 by taking the max-min composition
of fuzzy set A' and the fuzzy relation which

is translated from the fuzzy conditional propo-

sition "If x is A then y is B." 1In this con-

nection, he (1975), Mamdani (1977) and Mizumoto

et al. (1979, 1982) suggested several trans-
lating rules for translating the fuzzy propo-
sition "If x is A then y is B" into a fuzzy
relation.

In Mizumoto (1979, 1982) we compared infer-

rence results by their translating rules only
when A' of Prem 2 is A, very A (= A®), more or
less A (= A%®) and not A (= 7A), most of which
are special case of A%,

1t will be of interest to obtain and dis-
cuss inference results under other kinds of A'.
In this paper we obtain inference results when
A' is a fuzzy set obtained by attaching to the

fuzzy set A a linguistic hedge such as slightly,

sort of, highly, INT, WEAK, MIDI and so on,
and discuss which translating rule can get
reasonable inference results.

FUZZY CONDITIONAL INFERENCE

We shall consider the form of inference of (1)
in which a fuzzy conditional proposition "If

x is A then y is B" is contained. The inference

duces to the classical modus ponens when A' =
A and B' = B.
For simplicity, we shall rewrite (1) as

A= B

T
T @
where A, A', B, B' are fuzzy concepts which are
represented by fuzzy sets in universes of dis-
course U, U, V and V, respectively.

The fuzzy conditional A => B may represent
a certain relationship between A and B. From
this point of view, Zadeh (1975), Mamdani (1977)
and Mizumoto et al. (1979, 1982) proposed
several translating rules for translating A =>
B into a fuzzy relation in U x V.

Let A and B be fuzzy sets in U and V, res-
pectively, and let x and @ be cartesian product
and bounded-sum for fuzzy sets, respectively.
Then the following fuzzy relations in U x V can
be translated from A = B. The fuzzy relations
Rm and Ra were proposed by Zadeh, Rc by Mamdani,
and the others by Mizumoto by introducing the
implications of many-valued logic systems. For
example, Ra (arithmetic rule) is given as

Ra

(JA x V) @ (U x B) (3)

Ia(l-w (w)+u (V)Y / (u,v).
JUxV A B

It is noted that this rule is based on the
implication rule of Lukasiewicz's logic, i.e.,

a>b=1Aa(1l~-a+b), a,be[0,1] (4

Therefore, as other translating rules, it is
possible to introduce other implication rules
of many-valued logic systems to a translating
rule for A = B (¢f. Mizumoto (1982)).

Now, let up(u) = a and ug(v) = b, then we
have such translating rules as
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Rm: (aAab)v (l-a). (5)
Ra; 1A(1-a+hb). (6)
Rc: aAb. (7)
. 1 ... ax<h,
Rs: {0 ... a>b, (8)
. 1...axgh,
Re: {b ... a>b. (®)
Rb: (l1-a)Vvh. (10)
(1 ... ash,
Rp: (1)
12 ... a>h.
a
In the fuzzy modus ponens of (2), the conse-
quence B' can be deduced from Prem 1 and 2 by
taking the max-min composition "o' of the fuzzy
set A' and the fuzzy relation obtained in (5)-

(11) (the compositional rule of inference).
For example, the consequence Ba' by the rule
Ra is given as

Ba'= A' (12)
%wW)=X{%uW)“mJ“N” (13)

o Ra.

=x‘NAJu)AUA(l—qu)+u§VD]L

In the same way, we have
Bm' A' o Rm.
A' o Rec.

j]

(14)
Be!

Fuzzy System

Fuzzy Input | A —> B Fuzzy Output

AI BI

Fig. 1. Fuzzy system (A => B) with fuzzy input

A' and fuzzy output B'.

The fuzzy modus ponens of (2) represents
that the consequence B' is deduced when the
premise A' is given under the condition A => B.
If we regard the fuzzy conditional A => B (that
is, fuzzy relation) as a fuzzy system, then A'
and B' correspond to '"fuzzy input" and "fuzzy
output," respectively (See Fig.l). It will be
interesting to discuss what kinds of fuzzy out-
puts B' are obtained when various kinds of fuzzy
inputs A' are input to the fuzzy system.

LINGUISTIC HEDGES

Iin order to obtain various fuzzy inputs A', we
shall briefly review some linguistic hedges
proposed by Zadeh (1975) and introduce new
artificial linguistic hedges.

Let A be a fuzzy set in U. Linguistic
hedges which act on the fuzzy set A are listed
as follows (See Fig.2).

As a special case of A% (=.f U (u)a/u), we
can have such linguistic hedges sA

CON(A) =
DIL(A) =

minug A = A%7®

very A = A? (15)
(16)

(17)

more or Less A = AP

M. Mizumoto

(18)
(19)

plus A = A1®
highly A = plus very A = AZed

where CON, DIL and the following INT stand for
"concentration', ''dilation" and '"contrast inten-
sification', respectively.

INT(A)

p
= JZMA(u)Z/u +|1-201 -UA(u))Z/u (20)
HA(U)§9-5 UA(U);9-5

Using the above linguistic hedges, we can obtain ”
the following linguistic hedges.

slightly A = NORM(A and not very A)

= NORM(A n 7CON(A)) (21
= '/-2' L J () A (1 - uA(U)z)/UJ.
U
sort of A = NORM(DIL(A) n 7CON(A)*)
= NORM(more or less but not very
very A) (22)

.
1.232( uA(u)"'5 AL () /)

The above are main linguistic hedges proposed
by Zadeh. It is found that linguistic hedges
can be viewed as operators which act on a fuzzy
set. From this point of view, we can introduce
new operators on a fuzzy set., Some of these
are introduced as follows.

The effect of "contrast weakening" (WEAK,

for short) is the opposite of that of INT.

WEAK(A) (23)
- 2 _ _lp.l
- [ 0® - sz« fooy ) -3
UA(U)§9-5 uA(u);p.S
The operator of '"middle intensification’
(MIDI for short) has the effect of intensifing
middle grades and is defined as
MIDI(A) = NORM(An 7A) =

- LzuA(u) A2(1 -, () /.

2(An 7A)

(24)

As the opposite operator to MIDI, we can give
MIDW (''middle weakening'') as follows.

MIDW(A) = 7MIDI(A) = 72(An 7A)
f
=Jl}l-2uA(u))/\(2uA(U)-l)/u-

The operator aCUT obtains the a-level set
of a fuzzy set A. The operator aCUT* is the
opposite operator to oCUT, that is,

(25)

aCUT(A) =| 1/u + |[C/u

w, (W2e u, (u)<a

(26)

71 NORM (= normalization) is defined as

NORM(A) =L A with u,, = Vu,(u)
Ha % A u A
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Fig.2. Various linguistic hedges for a fuzzy set A ol e @SHEL
= = -
X = uA(U), b = u.(v), bm Mg v (V) (31)
Ik i
aCUT*(A) =| 1/u + 0/u (27) under the assumption that Y, (u) takes all values
uA(u)ég uA(u)>a in [0,1] according to u var&ing all over U,

The operator OSCAL which gives the scalor
product oA of a and A is defined as

aSCAL(A) = kupA(u) Al /u

(28)

Finally we shall give two operators which
have the effects of "slenderizing' and "swel-

ling" a fuzzy set A.

The first is named as
aSLND and the latter as QSWEL.

They have the

same expression but they are distinguished from

the values of their parameter Q.

n

aSLND(A)

aSWEL(A)

Lov (GUA(U) +1-a)/u ...
J

LauA(u)+1—u /u ...

That is to say,

o>l (29)

o<l (30)

Fig. 2 shows the effects of the linguistic
hedges of (15)-(30) on a fuzzy set A, where A

is a fuzzy set.%u/u inU

= [0,1].

INFERENCE RESULTS FOR VARIOUS FUZZY INPUTS

We shall obtain the consequence B' under each
translating rule of (5)-(11) when A' is a fuzzy
set given by applying linguistic hedges to A,
and discuss which method can get reasonable

consequences.

We shall discuss only the case of Rm (5) at
A' = A% (as a general case of (15)-(19))}.

that is, Uy is a function onto [0,1], i.e., x
is on [0,1].

bm’ =¥{xa/\[(xAb)V(l—X)]} 3 (32)
£(x) = x“A[(xAB)V (1-x)] (33)

b=

IN_ (xAD)V(1-%) 3

8

7

6

.5 5

4

1-%, 'g

0 il 1

0 5 Xo 1 X

Fig.3 The way of obtaining (32)

Fig. 3 shows the expressions x* and (xAD)
vV (1-x) using a parameter b. When x% is as in
this figure and b is equal to, say, 0.2, the
expression f(x) is indicated by the broken
line and hence bm' at b = 0.2 is the maximum
vatue of this broken line. The value is equal
to the height of the cross point of x®* and 1-x.
Thus, let x, (€ [0,1]) be the solution of x®
= 1-x, then the height (i.e., maximum value)
is given by 1-Xx,. Therefore, we have bm' at
b<1-x5 as

bm' = X f(x) =1-x45 +-

On the other hand, when b = 0.7 (2 l-x45), f(x)
is given by the dot-dash line and its maximum

b;l-x0

When A' = A%, the consequence Bm' is obtained value is b (=0.7). Thus, bm' = b for b>1-x4.
as Therefore, we have
- u —_ - -
uBm.(v)-X{uA(U) A LG () A () v (1 INCIDED, N {l X, b2l-x
b b;l-x0
This expression can be rewritten as (32} by = (1- xO)VIo.

letting

FIKR-F*
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1mlnus A Y S Ao, 4 Bl
*=plus A
=very A
A’ = highly A
M 0 A . ot . B
h G : 0o .25 .5 1 0 .25 5 1
Fig.4. Bm' = A% o Rm Fig.6. B' = INT(A) o R Fig.7. B' = WEAK(A) o R
Haa' 3 1 v/27p32— IOuB +1
1 + Z{Z7uB 5-9 2 )}
i h bers £ (35) and (
. The membership function p_ ,, © 35) an 36) are very
:gig 'N{nm%QﬂPFIESSA complicated and so we shg?% show in Fig. 6 and 7 the dia-
549 A’=&55A grams of Wg,, together with the inference results by other
261 - very methods,
1382 A= highly A
363 In the form of the fuzzy inference of (2), it is quite
'igg natural to expect that B' = B will be obtained when A' =
‘106 by A (satisfaction of '"modus ponens'). This criterion is
. . satisfied by the rules Rc, Rs and Rg. See the results for
0 5 1 A% gt o = 1 in Table 1. Namely, these methods obtain A o
Fig.5 BRa' = A% o Ra R = B. Moreover, it is also natural to expect B' = B when
A' = A. The method Rs satisfies this criterion and obtains

consequences B' =

This result is shown to hold for any a. There-
fore, using the notation of (31), the consequence
Bm' = A% o Rm is as follows.

Mpge (W) = (B-x )V g () (34)
where x, (£[0,1]) is the solution of x* =1-x.

Fig.4 shows the consequence Bm' (= A% o Rm)
using a parameter o. Fig.5 also indicated Ba'
(= A% oRa) which can be obtained in the same
way as Bm'. Table 1 shows the inference results
for other rules and A', where the notation Mp
stands for ppg(v).

The consequences BA' for the rule Ry (11)
at A' = INT(A) and WEAK(A) are shown in (35)
and (36).

Case of BA' = INT(A) o Ra:

3 2 1
) ZUB . O;UB;Z 35
UBA' Mg . (35)
- —< <1
where x iy
1 - L R
X = 3{24-/10cos—3—9, B = cos {?ir(27pB- 14)].
Case of BA' = WEAK{A) o RA:
{ UB 1
Y Osupsy
Bp' ”_B 1, 1 (36)
xto o a=Ms
1 Y+1 -1 27
= — -2 e = -
X 3(1 cos= ), ¢ = cos (1 TTHB)’

3 7
270 - 10p_ + 1
1 1 B B
x':—{1+f(27u —5+9f
3 4 B 3 )

BY, INT(B), WEAK(B), aCUT(B), aSCAL(B),
oSLND(B) and aSWEL(B) at A' = A”, INT(A), WEAK
(A), aCUT(A), &SCAL(A), aSLND(A) and aSWEL(A),
respectively. The other methods do not obtain
such results. Note that Rc gets always B
except the case of aSCAL(A), a £ 1. 1In Mizu-
moto (1982) we showed that all the methods
except Rc satisfy the natural criterion that
B' = unknown (= fyl/v) is obtained at A' = not
A, In this connection, for the criterion that
B' = wnknown is obtained at A' = not A, we may
say that all the methods except Rc satisfy this
criterion. In fact, these methods obtain B' =
unknown at A' = MIDW(A) and aCUT*(A) which are
similar to not A. Finally, it is not yet kpown
what kinds of consequences are good for A' =
sort of A, slightly A and MIDI(A) which lie
between A and not A.

From the above considerations, we c¢an con-
clude that the method Rs (8) is most suitable
for the fuzzy conditional inference, though the
given criteria are intuitive and rough.

IMFERENCE RESULTS UNDER NEW COMPOSITION

We shall introduce new composition called 'max
-A composition' for the compositional rule of
inference, and show that the inference results
under the new composition are better than those
under the max-min composition '"o' discussed
above.

Introducing new operation 4 (drastic product)

X ... y=1
XAy = {y coox =1 (37)
0 ... otherwise

new composition "A" is obtained from (13) by
replacing A by 4. For example, the consequence
Ba' by Ra under & is given by the following.
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TABLE 2 Inference Results B' = A' A R under Max-s Composition ''A"

a {ug ..aaxl u a ug'...a;l u {u: ...agl
A uB Hg "'“il B B {uB...ot;l B UB cee021
INT(A) Mg ug v [1-200-up)) Vg INT(B) g v [1-201-u, P 1} ug pg ¥ (1 -201-u¥]
: - - - 51| St 5+l 35 /541
stightty A] CBwpaEL] 35,50 PR JRALA IR RIS Ly | Frugnl
sort of A | (0.3413vu )A0.6587 | e/ A 1) up 4 0.6587 cJﬁEA 1 {e/igal 0.3413 vy, Al
WEAK(A) up -2(ug - ug) Vg g WEAK(B) | -2(ug-wpdvug | W -2(ug'- up) Vi
MIDI (A} 0.5 lA(uB+O.S) uBAO.S ZpBAl ZuBAl 0.5\/1_.B ZuBAl
MIDW(A) 1 1 My 1 1 1 1
1 .. .uB;oc Vg
aCUT(A) (1-a) Vg (1-atudal vy aCUT(B) {UB' g (1-a) vy =M
aCUT* (A) 1 1 uB Al 1 1 1 1
0 ...0<l Hg co.agl] 0 L. acl 0 PR A
= SCAL(B
GSCAL(A) {(1 -é) V.. .2l {[:A(l ';_+“B)"‘“;1 {UB...a;l OSCAL(B) | aSCAL(B) {(1-%)\'113...0‘;1 aSCAL(B)
aSLND(A) UE UB oSLND(B) g up Hy
(a;l) UB
aSWEL(A) (1-0a) vy ®SWEL (B) OSWEL(B) | «SWEL(B) (1-0a) vy | aSHEL(B)
(0ax1)
(*) ¢ = 1.232...
Ba' = A'" A Ra
SV b, (wv) a0
Mpar (V) = Yty (@) 4 (u,v) 1 P
The same way is applicable to other translating rule of (5)-(11). '/'
Table 2 lists the inference results by all the translating Ve
rules for various fuzzy premises A' under the max-A composition. Ba’,Bg’,BY —+ Lo
It is found from the results at A' = A® with o = 1 that all the sk l Z
translating rules can satisfy so called modus ponens under the ) 7
max-2 composition, though only the rules Rc, Rs and Rg satisfy RAT
the modus ponens under the max-min composition as shown in Table _»<Bm’,Bc’,Bb
1. As for other fuzzy premises A', we shall consider the case N
of A' = WEAK(A)., The inference results for A' = WEAK(A) under 4 g
the max-min composition "o'" and the max-4 composition "A'" are 0 - Lo
found in Figs 7 and 8, respectively. The rule Rs infers Bs' = 5 1
WEAK(B) under each of these compositions., The other rules do Fig.8. B' = WEAK(A) A R

not get such results., But these rules under the max-4 composi-

tion can infer the consequences which are very

similar to WEAK(B) as in Fig.8, which leads to REFERENCES

the satisfaction of the criterion that B' = B

at A' = A. Such tendency can be observed for Mamdani, E.H. (1977). Application of fuzzy

other A', Therefore, we may say that the max- logic-to approximate reasoning using lin-
A composition is a better compositional rule guistic systems. IEEE Trans. on Computer,
of inference than the max-min composition. C-26, 1182-1191,

Mizumoto, M., S. Fukami, and K. Tanaka. (1979).
Some methods of fuzzy reasoning. In M.M.

CONCLUSION Gupta, et al. (Ed.), Advances in Fuzzy Set
Theory and Applications, North-Holland,

Under the criterion that B' =~ B at A' = A and Amsterdam. pp. 117-136.
B' = wnknown at A' = not A for the fuzzy modus Mizumoto, M.,and H.J. Zimmermann. (1982).
ponens (1) and (2), it will be possible to make Comparison of fuzzy reasoning methods. Fuzzy
a quantitative analysis of the goodness of each Sets and Systems, 8, 253-283.
translating rule by measuring a similarity of  Zadeh, L.A. (1972). A fuzzy-set-theoretic inter-
B' and B (or umknown) when A' is given which pretation of linguistic hedges. J. of Cyber-
is similar to A (or mot A). netics, 2, 4-34.

The results of this paper will be useful to Zadeh, L.A. (1975). Calculus of fuzzy restric-
the problems such as fuzzy control, fuzzy diag- tion. In L.A. Zadeh, et al. (Ed.), Fuzzy Sets
nosis, fuzzy production system and so on which and Their Applications to Cognitive and Deci-
use fuzzy reasoning method with various fuzzy sion Processes, Academic Press, New York. Pp.

inputs. 1-39,



	img001.bmp
	img002.bmp
	img003.bmp
	img004.bmp
	img005.bmp
	img006.bmp

