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Fuzzy Sets and Their Operations, |

MASAHARU MI1zuMOTO

Department of Management Engineering,
Osaka Electro-Communication University,
Neyagawa, Osaka 572, Japan

This paper investigates the algebraic properties of fuzzy sets under the new
operations “drastic product” and “drastic sum” introduced by Dubois in 1979, and
the algebraic properties in the case where these new operations are combined with
the well-known operations for fuzzy sets. The properties of fuzzy relations are also
shown under a new composition of fuzzy relations which is defined by using the
drastic product.

1. INTRODUCTION

As the continuation of our study on “Fuzzy Sets and Their Operations”
(Mizumoto and Tanaka, 1981a) which shows the algebraic properties of
fuzzy sets under the operations of “bounded-sum,” “bounded-difference” and
“bounded-product,” and the algebraic properties of fuzzy sets when these
operations are combined with the well-known operations of intersection,
union, algebraic product and algebraic sum, this paper investigates the
algebraic properties of fuzzy sets under the new operations “drastic product™
and “drastic sum” introduced by Dubois (1979). The properties of fuzzy sets
are also obtained in the case where these new operations are combined with
the well-known operations of intersection, union; algebraic product, algebraic
sum; and bounded-product, bounded-sum. Moreover, the properties of fuzzy
relations are briefly discussed under new compositions which are defined by
using the drastic product and bounded-product.

The operations of drastic product and drastic sum have found very
interesting applications to interactive fuzzy numbers (Duhnis and Prade,
1981) and the fuzzy reasoning problem (Mizumoto, 1981b, 1982). Therefore,
it will be valuable to investigate the properties of these operations for further
applications.
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2. Fuzzy SETS AND THEIR OPERATIONS
Let 4 and B be fuzzy sets in a universe of discourse U, and 4, and u, be

the membership functions of 4 and B, respectively, then the operations over
fuzzy sets A and B are listed as follows:

Intersection: ANMB <> fymg=p, A tlp; (1)
Union: AUB<p, p=4,V liy; 2)
Algebraic Product: A -B<p, ,=u,ly; 3)
Algebraic Sum: A+B < u, . ,=u, + g — g 4)
Bounded-Product: A (DB < 1,05 =0V (1, +u,— 1); 5)
Bounded-Sum: A @ B <> pp=1A (U, + up); (6)
#A . ﬂB= 1
Drastic Product: AMB < p=1 iy, =1 N
0 tgotty < 1
by tipg=0
Drastic Sum: AUB < py p={ g 1, =0 8)
1'“:”,4’#B>0;

where the operations of A, V, + and — represent min, max, arithmetic sum
and arithmetic difference, respectively.

It is easily checked that the operations of intersection, algebraic product,
bounded-product and drastic product are dual to those of union, algebraic
sum, bounded-sum and drastic sum, respectively. Drastic product (7)) and
drastic sum () for fuzzy sets are corresponding to the operations 7 w(x, y)
and Tw*(x, y) which were originally studied by Schweizer and Sklar (1963)
as a semigroup operation and then introduced by Dubois (1979) into fuzzy
set theory. In this paper we shall rewrite Tw(x, y) as x Ay, and Tw*(x, y) as
x ¥V y for convenience. Thus, for x, y € [0, 1],

xAy=Tw(x, y)=!y---x=1 9)
0" X,_V<1,
X-y=0
xVy=TwH*x,y)={y---x=0 (10)

I-vx,y>0.
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FiG. 3. Operation results of 4 and B.

The following inequalities hold for these operations: For x, y € [0, 1],
XANp=xQOQyEx-y=xAy, (11)
xVyzx@yzx+yzxVy, (12)

where (), A, @, + and V stand for bounded-product, algebraic product,
min, bounded-sum, algebraic sum and max, respectively, which correspond
to the fuzzy set operations in (1)-(6).
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It follows from these inequalities that A is the most drastic operator, while
(), - and A are less drastic (Dubois and Prade, 1981). In fact, the drastic
product A is not only the smallest among {A, (), -, A}, but also among any
semigroup operation * of [0, 1] with identity 1, commutativity and non-
decreasingness, while the min A is the greatest among these operations. That
is, x A p=x*y=<x Ay Hence M is the smallest possible fuzzy set inter-
section and M is the greatest one. The dual property holds for V() and
V(). See Schweizer and Sklar (1963) and Dubois (1979). Therefore, in this
paper we call the operator A (as well, M) as “drastic product,” and the
operator V(L)) as “drastic sum.” In Figs. 1-2 these operations are depicted
by using a parameter y in order to see how drastic the operations A and V
are. Such tendencies can be also observed for the fuzzy set operations in
(1)-(8) (see Fig. 3).

From the inequalities in (11) and (12), we can have the following ordering
for fuzzy set operations.

AMNB<A()BcA.-BcANB

) (13)
CAUBCA+BCA®BCAUB.

3. ALGEBRAIC PROPERTIES OF Fuzzy SETS

In this section we shall discuss the algebraic properties of fuzzy sets under
the operations of drastic product () and drastic sum (L), and the properties
of fuzzy sets when these operations are combined with the well-known
operations in (1)-(6). Moreover, as a summary of this paper and the
previous paper (Mizumoto and Tanaka, 1981a), this section lists the
algebraic properties and algebraic structures under all the fuzzy set
operations (1)—(8).

I. The Case of Drastic Product () and Drastic Sum ()

Let A, B and C be fuzzy sets in a universe of discourse U, then we have

Idempotency: AMACA,

AV A DA, (14)

Commutativity: AN B=BMNA,
AUB=BUA, (13)
Associativity: AMN(BMNC)=AMNBYMNC, (16)

AUBUC)=AUB)UC;
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Absorption: AMN(AUB)CS A,

(17)
AU(AMNB)24;
Distributivity: AMNBUC)#AMNB)UAMNC), (18)
AVBMNCO)#AWUB)N(AWC)
De Morgan’s laws: AMNB =AUB,
o _ 19
AU B=AMNB, (19)
Identity: ANMU=A,
(20)
AUg=A;
Nullity: AMN¢=4¢,
9=9¢ 1)
ALU=U;
Complementarity: AMNA = ¢,
(22)

AUA=U;
where ¢ is an empty set defined by 4, =0.

THEOREM 1. Fuzzy sets under M form a commutative semigroup with
unity (= U)." The duality holds for \J. Fuzzy sets under (\ and ) do not
satisfy the absorption and distributive laws and hence they do not form such
algebraic structures as a lattice’ and a semiring.

We shall next examine the absorption and distributive properties for fuzzy
sets under the operations M and \J which are combined with M and U,

1. The Case of Drastic Product () and Drastic Sum () Combined with
Intersection (M) and Union (V)

Absorption: AMN(AMB)C A, (23)
AN({AUB)<S A, (24)
AU (AN B)D4; (25)

T A semigroup (S, *) is a set S together with an operation * such that x is associative. A
commutative semigroup with unity 1 (or a commutative monoid), (S, *, 1), is a semigroup
such that * is commutative and has a unity 1 suchasa*xl=1*xa=a.

2 A set L with two operations A and V satisfying idempotent laws, commutative laws,
associative laws and absorption laws is said to be a lattice and denoted as (L, A, V). A
pseudo-complemented distributive lattice (L, A\, V, 1,0} is a lattice which satisfies distributive
laws and has a pseudo-complement for each element of L, I and O are the greatest and least

“elements, such asaVI=Iand aA0=0.
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AYUAUB)24; (26)
and AN (ANB)C A, (27)
AN(4WB)=A4, (28)
AUANB)=A4, (29)
AUAWUB)DA; (30)
Distributivity: AR (BN C)=AMNB)N (AN C), 31)
AN(BUC)=(ANB)UMANC), (32)
AUBNC)=(AUB)N(AWC), (33)
AYUBUC)=(AYUB)UAUC); (34)
and ANBNC)2UNBYNANC), (35)
ANBUC)S(ANB)UANC), (36)
AUBNC)2(AUB)M(AUC), 37)
AUBUC)S (AUB)U (A UC). (38)

THEOREM 2, Fuzzy sets form a commutative semiring with unity (= U)
and zero (= ¢)* under () (as multiplication) and U (as addition). The duality
holds for \ and M. Moreover, fuzzy sets constitute a commuative semiring
with unity (= ¢) under \J (as multiplication) and ) (as addition). The duality
holds for ™ and M. Fuzzy sets form a lattice ordered semigroup with unity
(= U) and zero (= ¢)* under M, U and M, where M\ is a semigroup operation.
The duality holds for U, M and \\.

A semiring (R,X,+) is a set R with two operations of + (addition) and X
(multiplication) such that + is associative and commutative, and X is associative and
distributive over +, i.e., a X (b +¢)=(a X b) + (@ X ¢). A commutative semiring with unity 1,
(R, X, +, 1), is a semiring such that X is commutative and has a unity 1. Moreover, if + has a
unity O and satisfies 0 X a=a X 0 =0, it is said to be a commutative semiring with unity 1
and zero 0 and written as (R, X, +, 1,0).

* A lattice (L, A, V) which is a semigroup under x and also satisfies the following
distributive law is called a lattice ordered semigroup (L,A,V,*). ax(bVc)=
(a+ b)YV (a*c). A lattice ordered semigroup with unity I and zero 0, (L, A, V,*,1,0), is a
lattice ordered semigroup satisfying

aVi=I, asxI=Ixa=a,

avV0=a, ax0=0%xa=0.
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III. The Case of Drastic Product (") and Drastic Sum () Combined with
Algebraic Product (-) and Algebraic Sum (+)

Absorption:

and

Distributivity:

and

AMN(A-B)cA,
AN(A+B)c A,
AY(A-B)2A,
AUMA+B)24;
A-(AMB)c A,

A-(AUB)c A,
A+(AnNB)2A,

A+ (AUB)>4;
AN(B-C)2(AMB)-(AMNC),
ANB+C)SAMNB)+(ANC),
AUB - C)2(AWB)-(4UC),
AYUB+C)S(AUB)+(AWC);
A-BOC)2(4 - BYD (4 - ),
A-(BUC)S(4-B)U4-C),
A+ (BNCO)2(A+B)N (A4 +0),
A+BUC)S A +BYUMUTC)

(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
Gh
(52)
(53)
(54)

THEOREM 3. Fuzzy sets do not form such algebraic structures as a
lattice and a semiring under ™\ and +. The same is true of (7, -), (\J, -) and

(W, $).

1V. The Case of Drastic Product () and Drastic Sum (\.)) Combined with
Bounded-Product ((-)) and Bounded-Sum (@)

Absorption:

and

ANA G B)CA4,
ANUADB)S A,
AUMUO)B)DA,
AUADB)2A;
AOANB)CA,
AOAUB)CA,

(55)
(56)
(57)
(58)
(59)
(60)
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AD®ANMNB)24,
A® (A UB)24;

Distributivity: AN(B O C)2AMNB)HAMC),
ANB®C)S(ANB)@ (A4MNC),
AUBOO2(AUB) () AWC),
AUBOCO)SAVUB)®AWC),

and AQOBMNC)=2(A O BN A G 0),
AOBUCO)#(AOB)WHAOO),
ADBNCOYEADB)YN(ADC),
A®BUC)S(AD®BYJ A C).

(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)
(69)
(70)

THEOREM 4. Fuzzy sets do not constitute such algebraic structures as a
lattice and a semiring under (M and @. The same is true of (M, (), (U, ()

and (U, ®).

As a summary of this paper and our previous paper (Mizumoto and
Tanaka, 1981a), we shall list the algebraic properties of fuzzy sets under all
the operations in (1)-(8). Moreover, we shall summarize the algebraic

structures which fuzzy sets form under these operations.

Table I lists the algebraic properties of idempotency, commutativity....,
complementarity under the fuzzy set operations. The symbol “=" represents
that such a property is satisfied. The symbol “<” means, say, 4 M4 S 4 in
the case of M, and “2” means, say, A\JA4 24 in the case of . The

TABLE 1

Algebraic Properties under Fuzzy Set Operations

noow o @ 0 -+

Idempotency c

n

Commutativity = = =

Associativity = = = = = =
De Morgan’s laws = = =
Identity = = = = -

Nullity = = = = = =
Complementarity = = = = * +*
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complementarity under - and +, and M and U is not satisfied, but we
certainly have

$SA-AcS025U; 075UcA+AcU, (71)

p=ANAS05U; 0.5UcAUAC U, (72)

where, for example, 0.25U is a fuzzy set defined by ug,5, =025, =
0.25 x 1=0.25.

Table II shows the absorption property under each pair of fuzzy set

operations. The operations are ordered as in the case of (13). Each symbol
of the table means the following. For example,

A M (AU B)=A for the ordered pair (M, L),
c: AN GO B)YSA for (M, (O),
AU (A +B)24 for (U, +).

J

Table III indicates the distributivity under each pair of fuzzy sets
operations, where the symbols represent that, for example,

=: ANBUC)Y={ANB)YJ(AmnC) for the pair (M, ),
AN(B+C)c(AMB)+(AMNC) for (M, +),
ANBOHC)2(ANBYE (AMNC) for (M, ©),
AOB-CO)#(AOB)- (A C) for O, ).

U

*

TABLE 1I

Absorption Property under Fuzzy Set Operations

IO noou + e v
Ia) c &« © < <© < c
® c c c o = = <
. = < c < < <
n o < < = = = =
U = = = = 2 =2 2
+ 2 2 2 =2 =2 > 2
® =2 =2 =2 =2 =2 2 =)
¥y =2 =z 2 2 2 2 2
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TABLE III

Distributivity under Fuzzy Set Operations

N noouU o+ e Y
m \2 2 = = s o *
© = T # = = +* #* +*

> 2 S = = g < <
n =2 =2 > \ = ¢ < c
U 2 2 2 = - ¢ < c
i 2 2 =2 = => c c
@ #* # #* = = #* c
U o 2 2 = = < <

TABLE IV

Algebraic Structures under Fuzzy Set Operations

Commutative semigroup with CNANHNENONHNCITNHNE NN )
unity 1 ¢S, , 1) (F I, 80, (F, @ ), (F L+, 00, (F U )
Pseudo-complemented distributive CF.NU U 9
lattice (L, A, V, 1,0} (F, 0,0, 0, U
Commutative semiring 0L U, 8), 47,0y, 9, U,
with unity 1 and zero 0 (F, (0,0, U, 8), (F,@,MN, ¢, U,

(R, X, +,1,0) (F 0O, U 80,7, H 0, 8, U)
Commutative semiring with (F,N0 U (F, O, U F, 0 UY
unity 1 (R, X, +, 1) (F U, 00, (7, @, ), (F, +, U, 8)
Lattice ordered semigroup 0,0, UL 8), (F UM, 8, U,

with unity / and zero 0 Fo0, O, U, 6), (F, U0, D, ¢, U,
(Ly AV, ¥, 1,0) FLO0U, U 85, (F, 0,0, +,6,U)

Table IV shows the algebraic structures under fuzzy set operations, where
. is the family of fuzzy sets in U. The definition of each algebraic structure
is found in Footnotes 1-4.

4, NEw CoMPOSITIONS OF Fuzzy RELATIONS

We shall briefly investigate new compositions of fuzzy relations obtained
by introducing bounded-product () and drastic product A. The new
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composition called max-(:) composition and max-/A composition have been
shown by Mizumoto (1981b, 1982) to be very useful to fuzzy reasoning
problem: Quite reasonable inference results can be obtained in the fuzzy
conditional inference if these new compositions are used in the compositional
rule of inference, though good inference results are not obtained in general
when a max-min composition is used.

As is well-known, the max-min composition and max-product composition
of fuzzy relations are defined as follows:

Let R be a fuzzy relation in U X V and § be a fuzzy relation in V' X W,
then we have

Max-min Composition:

R oS o tyus(s w) = \/ {nls v) A pig(, w)), (73)

v
Max-Product Composition:

RS < s, w)=\/ (g, v) - us(v, w)). (74)

In the same way, we can easily propose new compositions by using
bounded-product () and drastic product A.

Max-(-) Composition:

ROS < uppg(u, w)= \/ {ug(u, v) © uglv, wil, (75)

v

where
xOy=0Vix+y—1).

Max-\ Composition:

RAS U, eu, W)=\/ {up(u, U)/-\aus(v’ w)l, (76)
v
where
X o-- y:l
x/\y: y...x:]

0. x,y< L.

Similarly, we could define a number of new compositions such as +-min
composition, M-product composition and V — () composition if V, +, @, V,
A, -, () and A were combined with each other.
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ExAMPLE 1. Let R and S be fuzzy relations such as
0.2 08 1 0.8 09 0.1
R=109 05 04}, S= I 07 08],
0.3 09 0.1 0.1 04 1

then we have Ro S, R - §, RO S and R A S in the following.

0.8 07 1] 08 056 1
RoS=|08 09 05], R-S=[O.72 0.81 0.4},
(09 0.7 0.8] 09 0.63 0.72
(08 0.5 1 0.8 04 1
ROS=107 08 04/, RAS=[O.5 0 0.4].
0.9 0.6 0.7J 09 0 0.1

As was shown in this example, we can obtain in general
RASCROSCR-S<R-S (77
by virtue of the property of (11) for A, (), - and A.

EXAMPLE 2. Let R be a fuzzy relation on the real line which represents
“u is approximately equal to v,” i.e., “ux~ v”:
\

tp(u,v) =max{0, 1 —ju —v|}. (78)
Then we obtain
By x(u, v) = max 0,1w|u;v| ,
lu—wv[\?
_ v lu—vl=<?2
Ug. p(U, )= ( 2 ) lu—vl=

0 v lu—v]z 2,
Uror(, v) = max{0, 1 —u —vl},
Upar(u, v)=max{0, 1 —|u—v|}.
Therefore,
RoR2R-R2R, ROR=RAR=R

From these results, we may say that the max-min composition R ¢ R and
max-product composition R - R fit our intuition in the case of R= =.
However, it is noted that the max-(-) composition RIJR and max-/A
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composition R A R satisfy the transitive law and thus the fuzzy relation R
which is reflexive and symmetric in nature becomes a fuzzy equivalence
relation (Zadeh, 1971) under each of [ and A.

As another example, let us consider a fuzzy relation S which also
represents “u =~ v” and is defined by

#s(u, v) = max{0, 1 — (u —v)*}. (79)

Then we have

(—v)’

0,1~
4

g s(, 0) = max 2 g, v),

(1—(L_Z£Z)2---lu—vl§2

0 e u—v|z2

ts.s(u, v) =

= ug(u, v),

(

u—uv)?
s, ) = max {0, 1— —T‘)‘“( > g, v),

Hsas(u, v) =max{0, | — (u—v)*} = pg(u, v).

Namely,
SoS25-S5o28S0O0S>2SAS5(=S8)

Thus, the fuzzy relation S also becomes a fuzzy equivalence relation under
A

As in the case of max-min composition “o”, we can obtain the following
properties under max-product composition “-”, max-() composition “01”
and max-/A composition “A”.

Let R, S and T be fuzzy relations on U, and let * € {o, -,(J, A}, then

RASCROSCR-SSR o §, (80)
R+x(S*«T)=R=*8)=T, ' (81)
SCT=>R*S<Rx*T, (82)
Rx(SUTN=R*xSYUR=T), (83)
R+« (SNTSR=S)NR = T), (84)
I+R=Rx*I=R, (85)
0xR=Rx*x0=0, (86)

(R *8) =S8R, (87)
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where 7 and O are identity relation and null relation, respectively, and R*
stands for the converse of R.

5. CONCLUSION

As was shown by Dubois and Prade (1981) and Mizumoto (1981b, 1982),
the new operations of drastic product and drastic sum have found very
interesting applications to the problems of fuzzy number and fuzzy
reasoning. Therefore, it is hoped that these operations will develop further
interesting application fields. For example, it will benefit such problems as
fuzzy classification (Tamura et al., 1971; Ozawa, 1978) to discuss a general
form of reflexive and symmetric fuzzy relation R which satisfies R * R=R
under * = A, [0, -, o and to obtain a fuzzy equivalence class and fuzzy
partition of R under x.
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