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NOTE ON THE ARITHMET!IC RULE BY ZADEH
FOR FUZZY CONDITIONAL INFERENCE

MASAHARU MIZUMOTO

Osaka Electro-Communication University, Japan

This paper shows that Zadeh’s arithmetic rule for fuzzy conditional
propaositions “If x is A then y is B” and “If x is A theny is B else y isC”
can infer quite reasonable consequences in a fuzzy conditional inference if
new compositions of “max-@ composition™ and “max-/\ composition” are
used in the compositional rule of inference, though, as was pointed out
before, this arithmetic rule cannot get suitable consequences in the
compositional rule of inference which uses max-min compaosition.
Moreaver, it is shown that the arithmetic rule satisfies a syllogism under
these two compositions.

INTRODUCTION

In our daily life we often make such an inference that its antecedents and
cansequences contain fuzzy concepts. Such an inference cannot be made
sufficiently by the inference rules of classical two valued logic and many
valued logic. In order to make such an inference with fuzzy concepts,
Zadeh (1975) suggested an inference rule called “compositional rule of
inference.” In this compositional rule of inference, he proposed a transla-
tion rule named “arithmetic rule” for translating fuzzy conditional proposi-
tionals “If x is A then v is B” and “If x is A then y is B else ¥ is C” into
fuzzy relations. This arithmetic rule is based on the well-known implication
in Lukasiewicz’s Ljepny logic and has become the center of interest in the
fuzzy reasoning problems (Baldwin, 1979a, b; Tsukamoto, 1979; Umano,
1978; Zadeh, 1979, 1980).
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In Mizumoto (1978, 19793, b, ¢, 1980b, 1981a, ¢) and Fukami
{1980), however, we have pointed out that the consequences inferred by
the arithmetic rule do not fit our intuition and do not satisfy quite natural
criteria such as modus ponens and modus tollens, and that the arithmetic
rule does not satisfy a syllogism.

In this paper, on the contrary, we show that the arithmetic rule can
infer quite reasonable consequences which fit our intuition if, instead of
the max-min composition usually used in the compositional rule of
inference, we use two kinds of compositions called *max-@ compaosition™
and “max-A composition” in the compositional rule of inference, where ©
is the operation of “bounded-product” which is dual to “bounded-sum”
(Zadeh, 1975), and A is the operation of “drastic product” Twi(x,y)
introduced by Dubois (1979). Moreover, we show that the syllogism holds
under the arithmetic rule by using these two compositions, though the
syllogism does not hold under the max-min composition (Mizumoto,
1979b).

ARITHMETIC RULE FOR FUZZY
CONDITIONAL INFERENCE

We shall first consider the following form of inference in which a fuzzy
conditional proposition “If x is A then v is B” is contained.

Ant 1: If x is A then y is B.
Ant 2: x is A°, (1)

Cons: v is B',

where x and y are the names of objects, and A, A’, B and B’ are fuzzy
concepts which are represented by fuzzy sets in universes of discourse U,
U, V and V, respectively.

An example of this form of inference is:

If a demand is /arge then a price is high.
The demand of autos is highly large.
The price of autos is very high,

The form of inference in (1) may be viewed as gereralized modus ponens
which reduces to the classical modus ponens when A" = A and B’ = B.
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Furthermore, the following form of inference is also possible which also
contains a fuzzy conditional proposition.

Ant 13 If % is A then y is B. _
Ant 2: y is B', )

Cons: x is AT,

This inference can be viewed as generalized modus tollens which reduces to
the classical modus rollens when B' = not B and A’ = not A.

The Ant 1 of the form “If x is A then y is B” may represent a certain
relationship between A and B. From this point of view, Zadeh (1975)
propased a translation rule called “arithmetic rule” for translating the fuzzy
conditional proposition “If x is A then y is B” into a fuzzy relationin U X V.

Let A and B be fuzzy sets in U and V, respectively, which are written as

A =.fUpA(u)/u ; B =.gvPB(V)/V . (3)

Then we have the arithmetic rule as

Ra

1l

(74 x V) 8 (U x B)
(4)

Sva 1A (L-p, (Wepg(v)) / (u,v)

where 7, x and @ denote the complement, cartesian product and bounded-
sum for fuzzy sets, respectively. It is noted that the arithmetic rule Ra is
based on the implication mule in Lukasiewicz’s logic Lajepni (ie.,
p~q=1A (I1—p+q.pq€[01]).

Figure 1 shows the diagram of Ra in which the symbols us and pp are
used instead of pa(u) and ug(v) for simplicity. The left figure depicted with
parameter pp will be found to be useful to discuss the generalized modus
ponens in (1), and the right figure with parameter p, is useful to analyze the
generalized modus tollens in (2).

In the generalized modus ponens of (1), the consequence B’ in Cons can
be deduced from Ant 1 and Ant 2 by using the max-min composition *o0” of
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the fuzzy set A" and the fuzzy relation Ra (the compositional rule of
inference). That is to say,

B' = A' o Ra
()
=4 o [(7a x V) 8 (Ux B)]
where the max-min composition o of A’ and Ra is defined as
RatopalV) = V{uﬁ,(u) A pRa(u,v)'} (6)
u

where V and A stand for “"max”™ and “min,” respectively. Thus, the
membership function of B’ of (5) is given by

e () = 7 (s @A 1A Qo g ()1 ©

Similarly, in the generalized modus tollens of (2), the consequence A' in
Cons can be inferred by using the max-min composition of Ra and B’
Namely,

A' = Ra o B! ()
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= {(a xv) e (vxB)] o B

) ju {‘;{[1 A Q=g (W (9] Apg, (W) pu. @

(Cont.)

As was indicated in Mizumoto (1979b), for example, when A" = A in the
generalized modus ponens, the arithmetic rule infers such a consequence as

B' =4 o ((7TA x V) @& (U =z B))
[ Liig(v)
.

— /v
4 B.

Similarly, when B’ = not B (= 7B) in the generalized modus tollens, we have

A'

[(TA x V) e (U x B)] o 7B

-SU L= p%;%l /u

£ 74,

It

These consequences B’ and A’ are found not to be equal to B and 74,
respectively. In other words, the arithmetic rule cannot satisfy the following
modus ponens and modus tollens which are quite reasonable demands in the
fuzzy conditional inference.

If x is A then y is B,
x is A. (modus ponens) ©

y is B,
If x is A then y is B,
y is not B. (modus tollens) (10)

X is not A.
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As a generalization of the fuzzy conditional inference with a proposition
“If x is A then y is B,” Zadeh (1975) also proposed a fuzzy conditional
inference of the form:

Ant 1: If x is A then v is D else y is C,
Ant 2: x iz A! (11)

Cons: y is D.

where A, A', B, C and D are fuzzy setsin U, U, V, V and V, respectively.
An example of such a form of inference which contains a fuzzy
conditional proposition “If x is A then y is B else y is C” is the following.

If a demand is large then a price is kigh else a price is fairly low.
The demand of autos is fairly large,
The price of autos is more or less high.

For this form of inference with a fuzzy conditional proposition “If x is A
then y is B else y is C,” he gave a translation rule (arithmetic rule) for
translating the proposition “If x is A then y is B else y is C” into a fuzzy
relation to UX V,

Let A, B and C be fuzzy sets in U, V and V, respectively, which are
represented as

we § s = oo = [ o
oA +B Je
(12)
Then we have the arithmetic rule as

Ra' = {7AxVeUxBN{Ax7V oy xcC)

=SU::V[lﬂ(l-}lﬁ(u)ﬂlB(v))]A[lA('*‘p,(“}*l"c("f))] / (u,v)
=Iva LA (Lo () g () A Gy (g () / (w,v). (13)

Remark: If C is replaced by V (the universe of discourse of C) which is
interpreted as “unknown,” then the fuzzy conditional proposition “If x is A
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then y is B else y is C” becomes a propasition “If xis A theny isBelse y is
unknown,” that is, “If x is A then y is B.” Therefore, the arithmetic rule Ra’
in (13) reduces to the arithmetic rule Rain (4) at C = Vie., e = 1.

In Fig. 2 the fuzzy relation Ra' is illustrated by a diagram in which the
symbols ua, ug and g are used instead of pa(u) wa(v) and po(v) for
simplicity, The left figure shows 1 A {1 — us + pp) using a parameter ug,
and the right figure shows 1 A (ua + pe) with a parameter pc. Therefore, the
expression 1 A (1 — s + up) A (s + pu¢) with parameters up and p¢ in
(13) is obtained by taking min (A) of the left and right figures.

The consequence D in Cons of (11) can be inferred from Ant 1 and Ant
2 using the max-min composition “0” of the fuzzy set A’ and the fuzzy
relation Ra’. Namely,

D=A'oRa' = A' o [(74x V & U x B)
n(Axv@ch)]
zSV y {pA,(u)A [l A(l-p.A(u)ﬂxB(v))
u
A (PA(u)’ch(V))]} /v (14)
Pp=s Rp=
1 1
\\ 5 7
.8
.7
.6
5 S
.4
.3
.2
0 — -+ A .
o] .5 1 o] ) 1l
1A (Lep,;+pg) 1A {p,+y,)

FIGURE 2. Ra’: 1A(t —p, + pp) Alug + u0)
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For example, when A" = A, and not A, the consequence D become as
follows (Mizumoto, 1980b, 1981¢).

D=A0[(?AXV@U.XB)0(AXV@UXC)]
l+pB(v)
= fv 5 /v
£ B.

D= 7A 0 [(TA xVoeUxXBIN(AxVeUX C)]

1+pc(v)
= gv 5 /v

# C.

~ From these results, it is found that the consequence D is not equal to B at
A'=A, and to C at A" =not A. Namely, the arithmetic rule Ra’ does not
satisfy the following criteria which may be quite natural demands.

Ant 1; If x is A then y is B else y is C,
Ant 23 x is A, (15)

Cons: y is B,
Ant 1: If x is A then y is B else y is C.
Ant 2: x is not A. (16)

Cons: y is C.

From the above results it was found that the arithmetic rule does not
satisfy the quite reasonable criteria (9), (10), (15) and (16). Therefore, it
seems that the arithmetic rule is not a suitable method for the fuzzy
conditional inference. But in the next sections we shall show that this
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arithmetic rule can satisfy these criteria and infer the consequence which fit
our intuition in the case that we use new compositions different from the
max-min composition in the compositional rule of inference.

MAX-0 COMPOSITIONS
AND MAX-A COMPOSITIONS

We shall first review the properties of the operations of *bounded-product™ O
and “drastic product” A in order to define new compositions of “max-©
composition™ and “max-A composition” which will be used in the composi-
tional rule of inference. The more detailed properties of these operations are
found in Dubois (1979, 1980), Prade (1980} and Mizumoto (1980a, 1981b),
and their interesting applications to fuzzy numbers are discussed by Dubeois
(1981).

The operation of *“bounded-product”™ © is defined as: For any x,
ye[o.1],

Bounded-Product

Xx @y =0v (x+y=-1) (17)

which is the dual operation of bounded-sum & introduced by Zadeh (1975).
The operation of “drastic product” A is the operation Tw(x,y) by

Dubois {1979} and is defined by

Drastic Product

.. Yy = 1
XAy = y .o X = 1 (18)
O [ N BN X’Y(l

The following inequality holds for these operations.

rAyg&x0ysx-ygxAy, ¥xyelo1]
(19)

where + denotes algebraic product. From this inequality it is seen that A is
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the most drastic operator, while ©, « and A are less and less drastic (Dubois,
1981). Therefore, we call the operator A as “drastic product” in this paper.
In Fig, 3 these operations are depicted with a parameter y in order to see how
drastic the operator A is.

The dual operations to © and A are defined as follows.

Bounded-Sum

X @y =1A(x+y) (20}
Drastic Sum

X ... y=20
xWVWy = ¥ ses X =20 @1
ere X,y > O

The following inequality holds:
xVyzxoy2x+yzxVy (22)

where + is algebraic sum which is dual to algebraic product {+) and defined by
)H'ry=x+ y—X'vy.

For the bounded-product ©® and drastic product A, the following
properties are abtained, The properties of the bounded-sum ® and drastic sum
V are omitted because they are dual to O and A, respectively and they are not
used in the discussion of the fuzzy conditional inference.

XEy, 2E€w 1B z8y & w
X ® X g x

xX®y=y8x

x® (y92)=(x0y) 6z
x@(y@z)2 (x@y)6 (x0z)
1-(x ©y) = (1-x) @ (1-y)
x @ 1= x, »®0=20

¥ ® (1-x) = O

X$y, 28w XA zs yAw(23)
XM X E X (24)
XAY =7 AX (25)
xA(yAaz)= (xaryasaz (26)
xA{yVo) g (xay)Vixaz) Q7)
1-({zAay) = (1-x) ¥ (1-y) (28)
xAl=x, xa0=0 (29
A (l-x) = 0 (30)
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FIGURE 3. Diagrams of A, @, - and A,

Motreover, the following properties are also given by combining ©, A, with V,

A

x@{yve)=(x0y)v(x0z)
x@{yAas)=({x@y)Aa (x@®2)
xv({y@z)a(xvy)e (xvz)
xa(y0z)a(xay)e(xazs)

A (yve)y=(zayrv(zasz)
xa(vaz)i=(xay)alxaz)
xvV{raz)a(zvy)a(xvaz)

ialyaz)x{xay)alxzacz)

ElY
(32}
(33)
(34)

From these properties we can conclude that the systems ¢[0,1], ©) and
{[0,1], A} constitute cummutative semigroups with unity 1 (that is,
commutative monoids) (Dubois, 1979). The systems {[0,1], ©, ®) and {[0,1],
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A, ¥} do not form such algebraic structures as a lattice and a semigroup since
they do not satisfy the idempotent laws (24) and distributive laws (27). But
the systems {[0,1], A, V, @) and {0,1], A, V., A} form lattice ordered
semigroups with unity 1 and zero O since they satisfy the distributive laws
(31) and so on. Moreover, {[0,1], V, © and {[0,1], V, A} form commutative
sernirings with unity 1 and zero 0. See Mizumoto (1980a, 1981b).

Using the operations of bounded-product © and drastic product A, we
can define the operations for fuzzy sets. Let A and B be fuzzy sets in U, then
we have

Bounded-Product

A ®B

li

L py(u) © pp(u) / u

_(U OV (rplu) +uglu) = 1) /u o
Drastic Product
AQYB = gU pa(u) A pglu) / u (36)

where

1

PA(U')“’ P’B(u)
Pa(w) A pp(w) =4 po(m) .. py(w) =2
0 eee ), pplu)< 1

As a simple illustration of using these operations for fuzzy sets, let us
consider the fuzzy sets A and B in Fig. 4a which are represented as

go.s g 2
A= i/u + -.5,-(2-1,1)/11
0.5

-t
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1 2
B =S u/u + g 2-u/u
0 1

Then we have A @ B and A 0 B as in Fig. 4b and ¢ which are given by

0.5 1
A @B = u/u o+ I -3-(11-1-1)/11
0 0.5

7
+ g5 $(7-59)/u
1

0.5 5
AQB:S u/u o+ 3-/1

0

We shall next introduce “max-@ composition” and “max-A composi-
tion” using the bounded-product © and drastic product A. These composi-
tions are easily defined in the same way as the max-min composition “0.”

Let R be a fuzzy relation in U X V and § be a fuzzy relation in V X W,
then we can obtain max-O composition “0” and max-A composition “4” of

R and § by the following,

Max-& Compaosition
b m s(i) = v (e @ pgran} 6
v

Max-A Composition

PR a slwsw) = v {_PR(H;V) A pglv,w) } (38)
v

Example 1: Let R and 5 be fuzzy relations such as
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.2 .8 1 B8 .9 .1

R = 09 05 04 ] S = l .7 .8
S0 .9 L1 1 .4 1

then we have RoS, R+ 8§, R0S and R4S in the following, where R+ §
means “max-product composition” (Kaufman, 1975) which is obtained from
(37) by replacing © by algebraic product (),

B8 L7 1
RoS=1].8 .9°.5
9 .7 .8

.8 .56 1

R . S = 972 081 04
.9 .63 ,72

S 1

R n S = .T o8 -4
_'9 .6 07

f.e .4 1

R & S = 05 O o4’
L.9 o .1

As was shown in this example, we have in general
Ra SEGRASECR -+ 3&Ro0S (39)
by virtue of the propenty (19) of A, ©, « and A,

Example 2: Let R be a fuzzy relation on the real line which represents *u is
approximately equal to v,”” i.e., “u = v™:
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pp(u,v) = max(0, 1-lu-vl)
then RO R and R 4 R become as follows.
RB R=Ra&a R =R

In this connection, using the max-min composition we have

-
Pﬁoﬂ(u’v) = max(0, 1- —Eﬂ)
That is,
RoR2R

M. MIZUMOTO

From these results, we may say that the max-min composition R o R fits our
intuition. However, it is noted that 0 and 4 satisfy the transitive law and thus
the fuzzy relation R which is reflexive and symmetric in nature becomes a

fuzzy equivalence relation (Zadeh, 1971) under both O and 4,

As another example, let us consider a fuzzy relation S which also

represents “u = v"” and is defined by
2
ps(u,v) = max{0, 1-(u-v)7)

Then we obtain

2
max(0, 1-“74 ) ¥ pg(n,v)

Vsos(u;v) =

2 .
Pseglusv) = max(0, 1-(2521 ) 2 pg(u,v)
Pgag(,v) = max(0, 1-(u-v)%) = pglu,v)

The fuzzy relation 8 becomes a fuzzy equivalence relation under 4.
As in the case of the max-min composition “0,” the max-Q composition
“0” and max-A compaosition “a™ satisfy the following properties.

Let R, 8 and T be fuzzy relations on U, then we have
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Ro(SsT) = (ReS)a T Ra (SaT) = (RaS)aT {40)

SET®> ROSEROT SETH RaSeRaT (41)

(RUS)BT = (Re T)V (S0 T) (RUS)YaT = (RaTIU{SaT) (42)

(Rns)o? & (R 2)A(SBT) (RNS5)aT & (RaT)O(54T) (43)

IeR =R, O0®R =0 IaR=R, O4R =20 {44)

(R835)% = 5%°s r® (Ra3)° = 5% R® (45)
where I and O are identity relation and null relation, respectively, and R®
stands for the converse of R.

As a special case of the definitions of max-® composition (37) and
max-A composition {38) of two fuzzy relations, let A be a fuzzy set in U and

R be a fuzzy relation in U X V, then the max-© composition “0” and max-A
composition “4” of A and R are obtained as
PAFR(V) =V {}IA(U-) o PR(UQV)} (46)
u
47

Paar(™ = v {0 & pyu

From (42) and (43) we can have the following properties which will be useful
to discuss the fuzzy conditional inference,

A u(Rlu 32) = (AP Rl)U(A DR2),

(48)
Aa (R1U Ry)=(Aa R{IV (4o Ry)
As (RlnR2)Q(ABRl)0(AU Ry),

(49)
A4(ROR,)E (AR )O(A4R,)
(Alu Az)n R = (Alﬂ R)U (Azn R)! (50)

(Alu Ay)a R= (44 R)V (4,4 R)
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(A0 8,)8 RE (A8 R)N(A,BR), o
(Alh A,)aRrRg (444 R)O (zlzt R)

ARITHMETIC RULE UNDER
MAX-0 COMPOSITION

In this section we shall discuss what consequences can be inferred by the
arithmetic rule when the max-O composition is used in the compositional rule
of inference.

In the generalized modus ponens in (1), we shall show what the
consequences B’ become when A’ is

A' = 4 = IU pA(u)/u

A' = very A = a8 = JU pA(u)z/u

0.5 j
A' = more or less A = A = « {(u)/u
y Yra

A' = not A = TA = j l—pA(u)/u
8]

which are typical examples of A",
Similarly, in the generalized modus tollens in (2), we show what the
consequences A’ is when B’ is

Bl

not B = 7B

Jv 1—pB(v)Xv

B' = not very B 732 = fv l-pB(v)z/v
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Bl

not more or less B = ?B0‘5 .—.f 1= pB(V)/v
v

Bl

B = v
fv h (v) /v

We shall begin with the generalized modus ponens in (1) In the same
way as (5), the consequence B’ can be deduced from Ant 1 and Ant 2 by the
following when we use the max-O@ composition “0” of A" and Ra in the
compositional rule of inference.

B = A" O Ra

ar e [(7a x v) @ (U x B)] (52)

The membership function of B’ is

il

e ()= 9 Ly (0) O (0,9) }

‘i {Ppu (u) © [1 A(l—}lA(U);HB(V))] }(53_}

by using (46). This expression can be simplified by omitting “(u)” and “(¥).”
Namely,

pge = I\:; {VA' ® [lA(l—uA+pB)]} (54)

Furthermore, this expression can be rewritten as (56} by letting

Ry = X, Pay = X', Pp = b, Pt = D' (55
A A B B

if pa{u) takes all values in [0,1] according to u varying all over U, that is, ua
is a function onto [0,1], i.e., x € [0,1].
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B! o= v {x' 0 [16(1-X+b)]} (56)

X
and let
£(x) = x* @ [1a(1-x+b)] &7

Therefore, we shall assume in the generalized modus ponens that iy is a
function onto [0,1]. Clearly, from this assumption, the fuzzy set A is a
normal fuzzy set.

(i) At A"=A: When A’ is equal to A, ie, o’ =a, X becomes x.
Thus, using the bounded-product © of (17), we can have (56) as’

bt = vV {X ® [ll\(l-}(+b)]}
X

= ;;{{OV[X + [1A(l—x+b)] - l]}

= v {0 v [(x+1-1) A (x+l—x+b-—1)] }
X

v{ovixam} =vixan]

% X

b at x =1

since X can take 1 from the assumption. Therefore, it is obtained that b’ = b,
i.c., iy = ptg from (55). In other words, B’ = B at A" = A. Namely,

ADRa =B (58)

which shows that the modus ponens (9) is satisfied by the arithmetic rule Ra
under the max-O composition.

TFor any real numbets X, vy and z, we have in general

X+ NAD=Ex+ AKX+ D
Xty Va=k+nVE+2
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(i) At A'=very A: When A’ =very A (=A%), ie, pa =ph, X'
becomes x2. Thus, (56) will be

b= v {a% 0 (1A (1-x+0)]]}
X
= {OV [:{2 + [lA(l-X+b)] - 1]}
X
- q{OV(}:zh (% - x + b))}
X
= V'{XZA[OV(Xz - X+ b)]}
it
.—.;.fc f£(x). (59)

Figure 5 shows the expressions x> and O V (x* — x + b) using a parameter b.
When b is equal to, say, 0.2, f(x) of (59) is indicated by the broken line and
hence V, f(x) at b = 0.2 becomes 0.2 by taking the maximum of this line. In
the same way, at b = 0.7, f(x) is shown by the line“— - —.” whose maximum
value is 0.7. Thus, b’ =0.7 at b=0.7. In general we can have b' =b at
x" =x2. That is to say, B’ = Bat A" = very A. Namely,

very A @ Ra = B (60)

(iii) A7 A" = more or less A: Since x' becomes /%, f(x) of (57) is

Tz @ [1A (1-x+b)]
0V (Jx A (Jx=x+b))
T2 A (Jx-x+0) ... JX-x+b20O (61)

£{x)

]

[}

The expressions /X and /X—x +b are depicted in Fig. 6 by using a
parameter b, When b = 0.1, f(x) is shown by the line “- - - -’ whose maximum
value equals to the maximum value of +/x—x+ 0.1, The expression
VX—x +b takes the maximum value (= b + 0.25} at x = 0.25. Thus, we
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b =
1
x2 9
x2 -x+h !
\ »
.7
X
. 5 = - 5
- 4
P S
o ,./, . 2
iy d . 1
0 L™ S, beeamennzs /. X,
0 «5 1

FIGURE 5. x* and O V (x? —x + b) in (59).

have V, f(x)=0.1+ 0.25=0.35 at b =0.1. From this figure, it is found
that Vy f{x)=b+0.25 so long as b<<0.25. On the other hand, when
b= 0.7 (# 0.25), f(x) is indicated by the line “— - — -”. The maximum value
of f(x) is equal to the height {=+/b} of the cross point of /X and
VE—x +b. Thus, V, f(x) =+/0.7 at b = 0.7. In general, we can obtain Vy
f(x) = +/b s0 long as b > 0.25. After all,

1 1
b+Z ¢ e bg Z
b' = v f(x) =
* 1
\J'.E .o bgz_’

Note that the black circles in the figure indicate the maximum value of f(x)
for each parameter b. Therefore,
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more or less A © Ra = B!
where
1 1
P.B‘l'z *a e PB&Z
Ppt = 1
J}Té PP pBgE

269

(62)

Since this fuzzy set B’ can be approximately represented by almost more or

less B, we have

JRax+b

%

I3

T
.6

5

o 25 5

FIGURE 6. /X and «/x —x + b in (61).



270 M. MIZUMOTO

more or less ADB Ra=almost more or less B

(63)
(iv) Ar A" =not A: Since x’ = 1 — x, we have (56} as
b' = ¥ {(1-x) o [1a (1—x+b)]}
- v {0 afov (-2m1m)] ]
% .
=1 ees 2t X =0
because x can take O from the assumption. In the sequel,
not A O Ra = unknown (64)

We shall next deal with the generalized modus tollens in (2). As in (8),
the consequence A’ can be obtained by using the max-© composition of Ra
and B',

Al Ra B B?

[(7a x v) @ (U x B)] & B 65)

H

and its membership function becomes

Paur = v{[l/\ (l—pA-t-pB)] ® PB'} (66)

\'a

by omitting “(u)” and “(v).” This expression can be written as in (68) by
letting

PA = a, ]"IA' = a't, Hg = »» Pt = x' (67)

if ug is a function onto [0,1].

a' = ;.’{{[l/\(l-a+}{)] ® x'} (68)
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Therefore, we assume that g is a function onto [0,1] in the generalized
modus tollens.

(v) At B =not B: When B is not B (=7B), ie, up =1 —pp, X'
becomes 1 — x from (67). Then (68) is as follows.

at = v {[l/\(l-aﬂ{)] @ (1-3{)}
= ; {o V[[],A(l-a+x)] + (1=x) - l]}
=V {O o [(l-x)n(l-a)]}

1]
-

{a-x~a-a)]

=l"'£1 e at x = 0

since x can take O from the assumption that ug (= x) is onto [0,1]. Thus,
2 =1—a,ie., gy =1 — pa, which leads to A" =rnor A at B =not B, that

is,

Ra B not B = not A (69)

e em—

This result shows that the modus tollens {10) is satisfied by the arithmetic

rule Ra under the max-@ composition “0.”
The consequences A' at B = not very B, nor more or less B, and B are

obtained in the same way as the cases of A'= A, very A, ..., not A, and
B =not B discussed above. We shall omit these methods because of

limitations of space. The consequences are given by the following,
{(vi) At B' = not very B:

Ra B not very B = A!

where A’ is
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o 1
1 - PA “e e P-A é 2'

Par = (70)

1 1
'Zf + (I-PA) L P-A; 2‘

L]

and is approximately represented by almost not very A. Thus,

Ra B not very B = almost not very A ()

(vii} Af B = not more or less B:

Ra U not more or less B = not A (72
(viti) At B' = B:
Ra B B = unknown (73)

Stated in English, these inferences obtained in (i)-(vili) can be expressed
as follows.

If x is A then y is B,
x is A. (modus ponens) (74)

y is B.
If x is A then y is B.
X is very A, (75)

y is B.
If x is A then y is B.

X is more or less A, (76)

y is almost more or less B.

If x is A then y is B.
x is not A. 7

¥ is unknown.
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If x is A then y is 3.
y is not B. (modus tollens) (7g)

X is not A,

If x is A then y is B,
y is not very B, (79)

%x is almost not very A,

If x is A then y is B.
y is not _more or less B. (80)

%X is not A,

If x is A then y is B,
v is B, (81)

¥ is unknown.,

From these results it is found that the consequences inferred by the
arithmetic rule under the max-@ composition are quite reasonable con-
sequences and fit our intuition.

Finally, we shall consider the fuzzy conditional inference of (11} with a
fuzzy conditional proposition “If x is A then y is B else y is C.” The
consequence D in Cons of (11) can be obtained from Ant 1 and Ant 2 by
using the max-@ composition “0” of the fuzzy set A’ and the fuzzy relation
Ra’ (13).

A' p Ra'
Ao [(TAxVeUxB) A (AxV@UXC))
(82)

D

I

The membership function of D is given by
Bp(v) = v {0 () @ (1A (1o, (WHpp(v))
u
A Gy (W rp (v ] (®3)
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If pa(u) takes all values in [0,1] according to u varying all over U, that is, ua

is a function onto [0,1], the expression (83) can be rewritten as (85) by
letting

Pa = X Par = X7, Pp =Dy P = Cy Py = d (84

3= v {x" e [1a(1-x+D) A (xec)] ] (85)
X

and let

f(x) = x* @ [1a(1-x+b).« (X+C)] (86)

Now we shall show what the consequences D, i.e., d, will be when A’ is

A' = A
A' = very A (= Az)
A' = more or less A (= AO'S)

At = not A (= 7A)

A' = not very A (= 7A2)

A' = not more or less A (= 749¢7)

(i) Az A" =4: When A" = A, x' becomes x from (84). Thus, (85) will be

o
]

y {x ® [lA (1-x+b) A (X+C)]}

v {OV[X + [1A (1-%+b) A (x+c)] - 1] }
x

v {O v [x AD A(2X-l+0)]}

v {x,\bA [0 v (2x-1+c)]} = v f(x) (87)
X X
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b‘o?

IT—

"’
c=al 03 0'5 07 1 1

ov(2x-1+c)
FIGURE7. xand OV (2x — 1 + c).

In Fig. 7 the expressions x and O V (2x — 1 + ¢) are depicted partly by using
a parameter ¢. For example, when b=0.2 and ¢ =0.5, {(x) of (87) is
indicated by the line *- - - - and its maximum value is 0.2. For any parameter
¢ we can have 0.2 as the maximum value. Thusd =V, f(x)=0.2atb=0.2,
Simitarly, when b = 0.7 we obtain d = V, f{x) = 0.7 for any c. Therefore, in
general, we have d =b at x =%, ie., D=B at A" = A. Stated alternatively,

A B Ra' = B (88)
It is found from this result that the criterion (15) is satisfied by the
arithmetic rule Ra’ under the max-O composition **0.”

(i) At A" =very A: When A" =very A (= A?), x' is x*, Then f(x) of
{B6) is given by

f(x) = x° ® [14\ (1-x+b) A (x+c)] (89)
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0 V{x2 + [1a (l-x-x-b)z\ (x+c)} - 1}

oV {XZA (xz-—x+b) A (x2+x+c-1) }

(89)
XA [OV (X2-x+b)] A [O v (x2+x+c-1)] (Cont.)

Figure 8 shows the expressions x> and OV (x> +x+c¢—1) with a
parameter ¢. When b= 0.7 and ¢ = 0.5, {(x) of (89) is shown by the line
“..-.". The maximum value of this line is 0.7. In the same way, we have 0.7
for any parameter c¢. Thus, d =V, f(x)=0.7 at b =0.7. Similarly, when
b= 0.2, we have d =V, f(x) = 0.2 for any ¢. Therefore, in general, for any
b, we obtain d =b at x’ = x*,i.e,, D=B at A = A% Hence,

very 4 B Ra' = B (90)

1p

o7

b=o4

b=.2

——

Ov (x2+x+c-1)
FIGURES. x>, 0V (x> +x+c—Dand 0V (x? —x + b).



FUZZY CONDITIONAL INFERENCE 77

FIGURE 9, /X, /X —x + b,and OV (VX + x —1 + ¢) of (91).
(iii) Ar A’ = more or less A: Since x' =+/x, f(x) of (86) is
Jx © [l A (1=x+D) A (x+c)]
oV {JE a (Jx-x+b) A (JX+x~14c) }
[Za(lx-z+b)A OV (J?c+x-1+c)] (o1)

£(x)

It

I

In Fig. 9 the expressions VX, /Xx—x+band O V(\/;_c+ x—=1+¢) are
drawn partly using parameters b and ¢, respectively.

(2) Case of c <4: For example, whenc =03 and b< 0.7 (= 1 —¢), the
maximum value of f(X) =vXA VX—x+b)A [OVvx+x—1+0.3)] is
given as the height of the cross point of v/Xx —x+b and vx +x— 1+ 0.3.
Thus, in general, when ¢ < 0.5 and b < 1 — ¢, the maximum value of f(x) is
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equal to the height of the cross point of vVx—x+bandvx+x—1+c.
The height is given by /(b + 1 — ¢}{2 + (b + ¢ — 1){2. Therefore,

f - -
d = v f{x) =Jb+%.c+b+gl
x

LI ] G=OO5, bﬂ 1-0 (92)

On the other hand, when b 2 1 — ¢, the maximum value of f(x) is given as the
height (= /b) of the cross point of v/X and v/x — x + b. Thus,

d=v f(x)=Jv ... cg£0.5, bzl-c ©
X

(b) Case of ¥ <c¢ <3§: Let us consider the case of ¢ = 0.6. When b < 0.1
(=c—14), the maximum value of f(x) is equal to the maximum value
{(=b+1)of Vx—x+b When 0.1 <b<0.4(=1-¢), the maximum value
of f(x) is given as the height [=+/(b+ 1 —¢)/2 + (b + ¢ — 1}/2] of the cross
point of /X + x — 1 + ¢ and v/x — x + b, When b > 0.4, the maximum value
of f(x) equals to the height {(=+/b) of the cross point of v/x and v/x — x + b.
Therefore, for 4 << ¢ < #, we can have in general

b +%_- cen béc-%
a=v £(x) = !"—‘*%“-‘ + 2ol c-dabalee (94)
X
IE LI bal"c

(c) Case of ¢ 2 %: When b < 4 the maximum value of f{(x) is equal to the
maximum value (=b + %} of v/x —x + b. When b 3> §, the maximum value is
the height (=+/b) of the cross point of v/X and v/x ~— x + b. Therefore, in
general,

b+F ... bz
d = v f(x) = 7
X IE e bi"q':

In the sequel, d, i.e., #p is given from three cases of (a), (b) and (c) by
the foltowing.

(93)
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wptl-pe  PptRc-l
(J s R \
» ch bl
JPB ees Pz i-pg
1
P * 7 eeo PRSP~ T
- - l 3
by = JWB+1 Ha . PB+§C 1 PC'%ﬁ}lBﬁ Lopg | s Bengsd
J}l—B P }AB_Z_, l-—pc
1 1
FB + Z - PBéZ
L1 | Pe®T
kJ"]‘I_B ' }lB- E

(96)

This membership function pp of the consequence D is very complicated
and so we shall show in Fig. 10 the diagram of itp using a parameter o,

From the figure it is found that up is approximately equal to v/ig.
Therefore, we may represent the consequence D as almost more or less B,
which leads to

more or less A B Rat

= almost more or less B L)

As the consequences D at A" = not A, not very A, and not more or less A
can be obtained in the same way, we shall list these consequences in the
following.

(iv) AtA' =not A:

not A B Ra' = C (98)

This inference result shows that the criterion (16) is satisfied by the
arithmetic rule under 9.

(v) At A" = not very A: The membership function of the consequence D
is given by
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1
( Pe * T vve Po&¥n
L+pg-p l+pp+y
S—F02 « =5 . hganpslong | wpad
Bp = ﬂ 1-(1-}10)2 cor PaBlopg
+ 1 % 1~
}lc I P uc PBI 1
y Hp >
L 1-(1‘}10}2 v Pcal-PB B -

99

up is depicted in Fig. 11 by using a parameter pg. From the figure, upy is

5

«25

_.....__'-P.B

0 1 1
0 .25 5 1

FIGURE 10. up of (96).
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J
Yp

1 -

0 I )

o .5 1
FIGURE 11. pp of (99).

approximately equal to 1—{(1—pc)® and thus the consequence D is
represented as almost not very not C, that is,

not very A @ Ra' = almost not very not C
(100)

Note: very not C is not grammatical. But if, say, C = happy, and not happy is
replaced by the single term unhappy, then very unhappy becomes meaningful.
(vi) At A" = not more orless A:

not more or less A ® Ra' = C (101)

Stated in English, the inference results in (i}(vi} by the arithmetic rule
under the max-& composition are as follows.
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If x is A then y is B else y is C.
X is A, (102)

¥y is B,

If x is A then y is B else y is C, .

¥ is very A. (103)
y is B,

If x is A then y is B else y is C.
X is more or less A. (104)

y is almost more or less B,

If x is A then y is B else y is C.
x is not A. (105)

y is C.
If x is A then y is B else y is C,
X is not very A. (106)

vy is almost not very not A,

If x is A then y is B else y is C,
X is not more or less A, (107)

y is C.

From these resulfs we can conclude that the consequences inferred by
the arithmetic rule under the max-& composition are quite reasonable and fit
our intuition.

ARITHMETIC RULE UNDER MAX-A COMPOSITION

In this section we shall observe what consequences can be obtained by the
arithmetic rule when the max-A composition is used in the compositional rule
of inference.
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We ghall first discuss the generalized modus ponens in (1). The
consequence B’ is given as follows by using the max-A compaosition “4” (47)
of A" and Ra,

Bt A' & Ra

[t}

ava [(7a x V) @ (U x B)],

The membership function of B’ becomes
Pp =V {PA' A [lA(l-pA+pB)] } (108)
u

by omitting “(u)” and “(v).”” Let us assume as in the preceding section that
t, is a function onto [0,1]. Then we have (108) as

bt o= v {x a[1a(1-x0)1} (109)
X

and let

£{x) = x* A [1A(1-x+b)] (110)

where

X = Par x' = YRR} b = Pp? bt = P‘B'(“l)

We shall indicate what consequences B’ can be inferred when A’ is equal
to A, very A, more or fess A, and not A.
(i) At A" =A: When A" = A, X" becomes x. Thus, f(x) of (110} will be

f{x) = X/.\[l/\(l—-}{-!-b)] (112)

In Fig. 12(i), the expressions 1 A(1 — x + b) and x are depicted. In this figure,
f(x) of (112) is shown by the solid line and the black circle. That is to-say,

.4 . e O é X s b
fx)=1Db ... x=1

0 ... otherwise
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Thus,
b' = v f(x) = ( vV X}V Db
X x €[0,b]
= bVvb
= b

Therefore, we have b’ = b, i.e., B’ = B at A’ = A. Namely,
Aa Ra =B {113)

(il) Az A" =very A: From Fig. 12(ii), f(x}=x*A [1A (1 —x+b)]
becomes

X L Oa}{éb

f(X): b vee X =1
0 vse Otherwice
Thus,
' = v f(x) = ( v x2) v Db
2 x¢[0,b]
- b VD
= Db

Namely, we have b’ = b at x = x*. Therefore,
very A 4 Ra = B (114)
(iii} Ar A" = more or less A: From Fig. 12(iii) we have

( vIx)vo
x¢[0,V]

Jo

vy £{x)

X
Jovub

'bl'

H
il
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Thus,

more or less A A Ra = more or less B (115)

(iv) Ar 4’ =not A:

bt = { v l1-x) =1

x¢[0,b]
Thus,
not A &4 Ra = unknown (116)

We shall next consider the case of the generalized modus tollens of (2).
The consequence A’ is obtained by taking the max-A composition “4” of Ra
and B',

At Ra & B!

I

1§

[(74 x V) @ (U x B)] & B

Then we can have

at = V{[la\ (1-a+x)] A x'} (117)
X

f(x) = [ln (1-a+b)]) A x° (118)

where

a = Jao a' = Ppre X = Hps x!' = Py e (119)

We shall obtain the consequences a',i.e., A" at B =not B, not very B,

not more or less B, and B,
(v} At B' = not B: When B' =not B, we have x" = 1 —x from (119).
Then f(x) of {118) becomes

f(x) = [2 A(1-24x)] ~» (1-x)
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and from Fig. 12(v} f(x) is obtained as

1=-2 ... x =20
f{x) =4 1-x ... agxsl
0 ess. Otherwise

Therefore, we have a’ as

a' = ¥ f(x) = (1-a) v ( V 1l-x)
X Xxela,l]
= (1-a) V (1-a) = 1-a
Hence,
Ra &4 not B = not A (120)

In the similar way, we can obtain the consequences A’ at B' =not very
B, not more or less B and B. The obtained results are as follows.
(vi) At B' =not very B;

Ra &4 not very B = not very A {121)

(vii) At B' = not more or less B:

Ra 4 not more or less B = not A {122)
(viii) Az B'=B:
Ra & B = unknown (123)

In the sequel, the inference results in (i)-(viii) by the arithmetic rule
under the max-A composition are stated in English as follows.

If x is A then y is B.
x is A, (modus ponens)

y is B. (124)
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If x is A then v is B.
¥ is very A, (125)
¥y is B.

If x is A then y is B.
X is more or less A. (126)

y is more or lesgs B.

If x is A then y is B.
X is not A.

(127}
¥y is unknown,
If ¥ is A then y is B,
y is not B, (modus tollens) (128)

X is not A.

If x is A then y is B.
y is not very B. (129)

X is not very A,

If x is A then y is B.
y is not more or less B.

(130)

X is not A,

If x is A then y is B,

v is B, (131
¥ is unknown,

As was founded in these inference results, the arithmetic rule can infer
quite reasonable consequences under the max-A composition as well a3 the
max-© composition discussed previously.
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Lastly, we shall discuss the fuzzy conditional inference of (11) under the
max-A composition. The consequence D is given by

D= A'"4A Ra!

Aa [(TAxVeUxB)A(AxT @®UxC)]

and the membership function of D is
i = ¢ {par & e o) w Gy 1
u :

Furthermore, up is rewritten as

d=v {x' N [1A(1-X+b)A(X+C)]} (132)
X

and let

f(x) = x' » [1/\(1—X+b) A(x+c)] (133)

where

X=PA’ x‘=P‘A" b=‘P‘B’ C=PC! d=}1D

We shall now obtain the consequence d, ie., D at A=A very A more
or less A, not A, not very A, and not more or less A, From Figure Fig. 2, we
can draw the expression 1 A {1 — x +b) A (x + ¢} with parameters b and ¢
in (133) by the solid lines in Fig. 13. The left figure isat b+ ¢ <1, and the
right figureisatb +¢2 1.

(i) At A" =A: When A" = A, X’ becomes x. Thus, f(x) of (133) is

f{(x) = x [1 A {l-x+d) A (x+c)]
When b + ¢ < 1 (the left figure of Fig. 14(i)), f(x) is given by
b e X = l

f(x) =
ees Otherwise
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Ipemmmmmmmeny ., ‘/ """ R
b -

” X 1a{l-x+b)

il 1a(1-%+b) [ 1alxre)
AN
c lalxec)
—_—X , .—rx
0 b 1-c 1 0 I-c b 1
{a) 1t bec el {b) At bre gl

FIGURE 13. 1 A (1 —x + b) A (x + c) (solid line).

d=v f(x) =b ... at brcxl (134)

On the other hand, when b+ ¢ > 1 (the right figure of Fig. 14(i)), f(x)
becomes

X s 1-C§X§b
x =1

]
e

f(x)
0 ... otherwise

Then,

1lp . lr RN
+ ,' I/ :‘
Vi '\’ b / + ]
P \\\ s ////
°r /'/ 4 . ’ ,
e \J’: 0 x
/ ’ 4‘,
4‘ I’
. —X o , —+ X
0 1 l-¢ P 1
(i) x' = x

FIGURE 14. f(x) = x" A [I A (I — x + B) A (x + ¢)] (solid line and black circle).
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(v} x1 = 1-x7
FIGURE 14. (Continued)
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(vi) x' = 1-Jx

FIGURE 14. (Continued)

ad=v f(x) =( v x)Vh
X x€[l-c,b]
= b Vb
= b ees &t bicyl (135)

From {134) and (135) we can have d = b for any b and c. Hence

A A Ra' = B (136)
(ii) Ar A" =very A: Since x’ = x°, f(x) of (133) becomes

f(x) = X2 /N [l A(l=-x+b) A (x+c)]

From the left figure (at b + ¢ < 1) of Fig. 14(ii), f(x) is given by

b ... ¥ =1
f(x) =
Q0 ... otherwise

d=v f{x) =% ,.. at b+c<el

When b + ¢ 2 1, f{x) becomes
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X2 I l_ciXéb

f(x) = b # = 2 X = 1
0 ess Otherwise

and thus
d=v f(x)=( v x2)Vhb
X x€fl-c,b]
:bz\/b
= b

Therefore, we obtain d = b for any b and ¢. Namely,
very A & Ra' = B {137)

(iii) Ar A" = more orless A: From Fig. 14(iii), we have

d =v f(x) =b ... bre<l
x
d=v f(x) =( vix )vb
X xefl-c,b]
- Jo vy
= \rg “oe b+03 1
Therefore,

more or less A 4 Ra' = D

where
PR eee Pp * Pp<l

= J'}TB oo Pyt pgal (138)

Pp
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—_— N P'B
0 .5 1
FIGURE 15. pp of (138).

et

In Fig. 15, up is depicted by using a parameter uc. From this figure, the D
can be roughly represented as afimosr (more or less B or B). Hence,

more or less A 4 Ra' = almost (more or less B or B) (139)

(iv) Ar A" = not A: From Fig. 14(iv), d is given as
d = C . e at b+C < l

l-x ) Ve

d=( v
xef{l-c, ]

c VvV e

= C ... at b+czl
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Therefore, we have

not A &4 Ra' = C {140)
(v) At A" =not verv A:

not very A A Ra' = D

where

Yo .-+« Pp + pc<]_
Pp ~ o (141)

Figure 16 shows up, with a parameter up, and D can be approximated as
almost (not very not C or C), which leads to

not very A 4 Ra' = almost (not very not C or C)
(142)

(vi) At A" =not moreorless A:

not more or less A A Ra' = C (143)

After all, the inference results obtained in (i)-(vi) by the arithmetic rule
under the max-A composition are stated in English as:

If x is A then y is B else y is C.
x is A. _ . (144)

y is B.

If x is A then vy is B else y is C,
X is very A, (149)

vy is B.
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FIGURE 16. up of (141).

If x is A then y is B else y is C.
X 1s more or less A, (146)

vy is almost (more or less B or B).

If x is A then y is B else y is C.
x is not A, (147)

y is C,
If x is A then y is B else y is C,
x is not very A, (148)

y is almost (not very not C or C).
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If x is A then y is B else y is C,
X is not more or less A.

(149)

y is C.

{t is found from the above results that the arithimetic rule under the
max-A composition also satisfies the criteria (15) and (16) and can get quite
reasonable consequences which fit our intuition.

SYLLOGISM BY THE ARITHMETIC RULE

In this section we shall investigate an interesting concept of “syllogism™ and
show that the syllogism holds for the arithmetic rule under the max-O
composition and the max-A composition, though the syllogism does not hold
under the max-min composition.

Let Py, P; and P, by fuzzy conditional propositions such as

+ If x is A then y is B
if y is B then z is C
+ I1f x is A then z is C

where A, B and C are fuzzy seis in U, V and W, respectively. If the
proposition P; is deduced from the propositions P, and P;, that is, the
following holds:

Pl: If x is A then y is B.
P2: if y is B then 2z is C. (150)

P3: If x is A then z is C.
then it is said that the syllogism holds.

Let Ra(A,B), Ra(B.C) and Ra(A,C) be fuzzy relations in UX V, VX W
and U X W, respectively, which are obtained from the propositions Py, P,
and P; by using the arithmetic rule (4). If Ra(A,C) can be obtained from
Ra{A,B) and Ra(B,C) by taking the composition of Ra(A,B) and
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Ra(B,C), then we can say that the syllogism holds under the composition,
We shall first discuss the syllogism under the max-min composition “o.”
The fuzzy relations Ra(A,B) and Ra(B,C) are obtained from the propositions

P, and P; by using (4);

ra(A,B) (74 =z V) & (U x B) (151)

Ra(B,C) (7B x W) ® (V x C) (152)
Then the max-min composition *¢” of Ra(A,B) and Ra(B,C) will be

Ra{A,B) o Ra(B,C)

= [(YA x V) ® (UxB)] o [(?B X W) 8 (Vx C)]

(153)
and its membership function becomes as follows,
PRa(A,B)oRa(B,C)(u’W)
= v L[ A Ly (@) epg (0]

v
A[14~(1-PB(V)+pC(w))]} (154)
Moreover, this expression can be rewritten as
d = v{[lx\(l-aﬂ{)] A [lA(l—X-I-C)]} (155)
X
under the assumption that pg is a function onto [0,1], where
a = Uy X = Hps C = Pn (156)

The expression 1 A {1 —a+ x) can be depicted by using a parameter a as in
Fig. 17(a), and the expression 1 A (1 — x + ¢} is shown by using a parameter
¢ as in Fig. 17(b). These figures are from Fig. 1. From these figures the
expression {1A(I—a+x)] A[1A(l—x+¢)] in (155) with parameters
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as= c=
Q 1 1
.1 // §.9
.2 .8
.3 l7
.4 .6
t5 I5 ‘5
06 04
.7 o3
.8 .2

o 1 0 1

(a) la{l-a+x) (b) 1A(l-x+c)
FIGURE 17, IA{l—a+x)and 1 A(l —x + ¢}

a=a and ¢ =c' is shown by the line “.---" in Fig. 18 and its maximum
value (by virtue of (155)) is equal to the height (=0.5+ (1— a’ + ¢'}{2) of the
cross point of 1 —a' + x and 1 ~X + ¢'. On the other hand, if the parameter
a is taken to be 2" as in Fig. 18, the maximum value of its line ¥—-—-"
becomes 1. Therefore, in general, for any parameters a and ¢, the maximum
value of [IA{1—a+x)] A [LA{(1—x+¢)] is shown to be 1A (0.5 +
{1 —a+c)f2), that is

d = 1A(0.5 + }.'gﬁ) {157)

ama' ¢

0 1
FIGURE 18. 1 A1 —a+ x)] A1 Al —x+ )] in(155).
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Therefore, the membership function ira(a,BoRaB,c) (4;W) of (154) becomes
as follows.

MRa(a,B)oRa(B,c)(Ws¥) = 1A (0.5

l-pA(u)+pC(w))
2

+ (158)

From this result, we can have
Ra(A,B) o Ra(B,C)

1= +
=J LA (0.5 + Fal®) pc(w)) / (a,w)
Uxw 2

4 Ra(a,0) (= [ L a (Lo () g () / (0,))
UxW
(159)
Hence, we can conclude that the arithmetic rule does not satisfy the syllogism
under the max-min composition.

We shall next discuss the syllogism under the max-© composition *0.”
The max-0 composition {37} of Ra{A,B) and Ra(B,C) is given by

Ra(4,B) ® Ra(B,C)

- (e xv) e (Ux B)) o [(7B x W) & (Vv x 0)]
and its membership function is

Pra(a,B) Ra(B,c) WsW)

-y {[lA(l-}lA(u)"'}lB(v))]

v

o [La (opg(mrpg)1 )
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As in the case of the max-min composition, this expression can be given as

a' = v {[1 ~{1-a+x)] @ [1 A (l-—x+c)]} (160}
x

and let

f{x) = [lA(l-a-s-:c)] ® [1A(1—x+c)]

Then f(x) becomes as follows by using the bounded product @ in (17).
fx)

- ov{[1a(1-a+0)) + (1 a(x+e)] - 1}
= OV{[J.A (1-a+x)] + [OA(—X-!-C)]}

= 0 V{ 1a (l-x+c) ~ {(l-a+x) A (l-a+x-x+C) }
- ovi 1A(1-X+C)A(l-a‘l'X)A(l—a-;-C)}I

= 1a(l-xtc)a (lea+x) a{l-a+c)

= la{l-a+x) A (1ex+c)a 1A {1l-asc)

Thus we have d’ of {160) as

dt = v £(x)
p.

v {1 A(l-a+x) A (1—x+c)} A [1a(1l-as+c)])

[1.« (0.5 + .l_:é;_iE)l A [1a(l—a+c)]

from (155) and (157)

1a{l=a+c) e 0.5 + -]::%i-g > l-a+c

]

Therefore,
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Ra{A,B) B Ra(B,C)

1la(l- ’
§ 1a @y Gapg) / (1)

n

Ra(4,C) (161)

which leads to the satisfaction of the syllogism under the max-© composition.

Finally, we investigate the case of the max-A composition. The
membership function of the max-A composition of Ra(A,B) and Ra(B,C) is
given in (162} in the same way as the cases of the max-min composition and
the max-@ composition.

an = v { [ln(l-a+x)] A [1A (1-}:+o)] } (162)
X

f(x) = I:lA (1-a+x)] A [1 A (1-x+c)] (163)
where A is the drastic product of (18},

Using Fig. 17(a) and (b), the function f{(x) of (163) is depicted by the
solid line as in Fig. 19. When ¢ < a, f(x) is obtained from Fig. 19(a) as

l-z+x ess OE x8cC

f(x) = { l-x+c bee 2 & x% 1
0 ee. Otherwise
Thus, from (162)
dn = v f(x)
b'd

( v l-casx ) V ( v 1l-x+c )
xe¢[0,c] xefa,l]

(1-a+c) ¥ (1-a+c)

l-a+c .es at c g a
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1 peeeneneneny R s R
o la{l-x+c)
l-a+c | o R \
/‘\ 1a{l-a+x)
k la{lex+c)
kY
la(l-a+x)
I hi-’ x_l Yy |x 3
0 4] a 1 0 a [ 1
(a) At csa (b) At cza

FIGURE 19. f(x}=[1A{ —a+x)] A[1A (1 —x + )] of (163) (solid line).

When ¢ = a [Fig. 19(b)],

d"=Vf(X)=1 P at C;a
b4

Thus, for any parameters a and ¢, we have
a" = 1A (1=a+ec)
Therefore, the max-A composition “4” of Ra(A,B) and Ra(B,C) becomes

Ra(A,B) & Ra(B,C)
= 1 aAa(l- / ’ )
jm (1, () g () / (uyw

= Ra(A,C) (164)
Therefore, the syllogism also holds under the max-A composition.

CONCLUDING REMARKS

We have shown that the arithmetic rule can get quite reasonable inference
results in the fuzzy conditional inference with “If ... then ...” and “If . ..
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then ... else ...” when the max-© composition and the max-A composition
are used in the compositional rule of inference. Moreover, the arithmetic rule
satisfies the sytogism under these compositions.

In this connection, it is possible to introduce the max-product
composition “+" (39) in the compositional rule of inference. For example, we
can have such inference results as

g (l+},13(v))2
v

2 /v

A e 8 =

palu) o
1 - ——3——)

Ra ¢+ not B = g u
U

1
L et f : +2B(v))2 /oy
v

l+p . (v)
(2

not A « Ra' = (
- v 2

Ra(A,B) +« Ra(B,C) = [ 1A(0.5
UxW

l-pA(u)+pC(W))2

. / (W)

4+

It is found from these results that the inference results under the
max-product composition are better than those under the max-min composi-
tion, but they do not satisfy the reasonable criteria (9), (10}, (15) and (16).

It will be of interest to apply the max-© compesition and max-A
composition to other fuzzy inference rules such as “maximum rule” and
“fuzzified binary rule.” These results will be presented in subsequent
papers.
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