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Abstract

This paper investigates the algebraic properties of fuzzy
sets under new operations of "drastic product" and "drastic sum"
introduced by Dubois in 1979, and the algebraic properties in the
case where these new operations are combined with well-known
operations for fuzzy sets. The properties of fuzzy relations are
also shown by introducing new compositions of fuzzy relations which

~are defined by using drastic product.

l. Introduction

As the continuation of our study on "Fuzzy Sets under Various
Operations" in BUSEFAL, No.4, 38-49, 1980, which shows the algebraic
properties of fuzzy sets under the operations of "bounded-sum",
"bounded-difference” and "bounded~product", and the results when
these operations are combined with the well-known operations of
intersection, union, algebraic product and algebraic sum, we shall
investigate the algebraic properties of fuzzy sets under new opera-
tions "drastic product" and "drastic sum" introduced by Dubois (1979).

The properties of fuzzy sets are also obtained in the case where

* On leave from Osaka Electro-Communication University, Osaka, Japan,
until Aug. 31, 1981.
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these new operations are combined with the well-known operations

of intersection, union; algebraic product, algebraic sum; and bounded-
product, bounded-sum, Moreover, the properties of fuzzy relations
are briefly discussed under new compositions which are defined by

using the drastic product and bounded~product,

2. Puzzy Sets and Their Operations

Let A and B be fuzzy sets in a universe of discourse U, then

the operations on fuzzy sets A and B are listed as follows,

Intersection: ‘ ANB <& Pans = Pa A Bp (1)
Union: AUB <= wp=1 Vi (2)
Algebraic Product: A B <> p 5= (3)
Algebraic Sum: A+B< pyos= Ry + g - HaRp (4)
Bounded-Product: A @B <& Paop = O V (pA + pg - 1) - (5)
Bounded-Sum: A ®3B & Pagp = 1 A (pA + pB) (6)
Drastic Product: By oo pg=1

AAB < pyp={Hg .. B =1 (7)

Drastic Sum: Ry e+ pg=20

1 e Py, pg> 0

where the operations of A , v, + and - represent min, max, arithmetic

sum and arithmetic difference, respectively.
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Clearly, the operations of intersection, algebraic product,
bounded-product and drastic product are dual to thdse of union,
algebraic sum, bounded-sum and drastic sum, respectively, Drastic
product (M) and drastic sum ( U) for fuzzy sets are corresponding
to the operations Tw(x,y) and Tw*(x,y) by Dubois (1979), respectively,
An interesting application of these operators to fuzzy numbers is
discussed by Dubois and Prade (1981)., 1In this paper we shall

rewrite Tw(x,y) as x A y, and Tw¥(x,y) as x V y for convenience.

Thus,
X oo =1
X/-\y=TW(X,y) = Yy ) =1 (9)
0 ... x,y5<1
X eee y = 0
X\'/y' = TW*(X,;Y) = y Ty x=0 (lo)

=
L]
L]
*

X, y> 0

The following inequalities hold for these operators: For any

x, ye[0,1],
XAJSEXO0yE X+ JEXAY (11)
XVyzx0y3 xX+yaxXxVvy (12)

where ©, +,A, @, +, Vv stand for bounded-product, algebraic product,
min, bounded-sum, algebraic sum and max, respectively, which
correspond to the fuzzy set operations in (1)-(s).

From these inequalities it is found that A is the most drastic
operator, while ©, . and A are less and less drastic (Dubois and
Prade, 1981). The same holds for v, ®, + andv, Therefore, in
this paper we call the operator A (as well,@ ) as "drastic product",

and the operator v (U) as "drastic sum",
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In Fig. 1-2 these operations are depicted by using a parameter
y in order to see how drastic the operators A and v are, Such
tendencies can be also observed in the fuzzy set operations in (1)

-(8) (see Fig.3).

3. Algebraic Properties of Fuzzy Sets

In this section we shall discuss the algebraic properties
of fuzzy sets under the operations of drastic product (M) and
drastic sum ( U), and the properties of fuzzy sets when these
operations are combined with the well-known operations in (1)-(6).
The properties under other combinations of these fuzzy set operations

are found in Mizumoto and Tanaka (1980, 1981),

(1) The Case of Drastic Product (M) and Drastic Sum (U):

Idempotency: AG A S, AUAR A (13)
Commutativity: AAB=BMAA
(14)
AUBR=BUVUA
Associativity: An(BAC)=(AAB)AC
(15)
Av(@Buwc)=(AUB)UC
Absorption: An (AUB)¢c A (16)
16
Ay (AAaB)2 A
Distributivity: AN BUe)#AnaBuYu(anc) ()
17
Ay (Bac)#Z@AuB)m (AUYC)
De Morgan's laws: AaB=AUTE (
18
EUB=1aE )
Identities: Aagp-=9¢, AV NR=0
\ (19)
AAR = A, AVY P =A
Complementarity: AR LK =g, AYydA=Q (20)

where § is an empty set defined by }1¢ = 0, and Jb is a universe of
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discourse U and is defined by pg = 1.

Theorem 1: Fuzzy sets under A and U do not satisfy the absorption
and distributive laws and hence they do not form such algebraic
structures as a lattice and a semiring. Fuzzy sets under M form
a commutative semigroup with unity (= ) (that is, a commutative

monoid), The duality holds for U,

We shall next examine the absorption and distributive properties
for fuzzy sets under the operations M and U which are combined with

N and U,

(II) The Case of Drastic Product (M) and Drastic Sum (V) Combined

with Intersection (N) and Union (U):

Absorption: AnR(ANB)caA (21)
AN (AuUuB)E A (22)

Av((AnB)2 A (23)

AV(AuB)2 A (24)

and An (AmB) caA (25)

AN (AYUB)=A (26)

AU(ARB)=A4A (27)

Au(AUB) 24 (28)

Distributivity: AA(Bnc)=(AaB)n (A0 C) (29)
AA(Buc)=(A0aB)u (AAC) (30)
AU((BAC)=(AYB)N (aVvC) (31)

AU (Buc)=(aUB)u(auc) (32)

and An(BAC)2(an B)MA (ANnC) (33)

AN (BUC)ES (ANB)U(anc) (34)
Au(BAaCc)2(AuB)A (A uUcC) (35)

Au(BUC)E (AuB)U (AuUC) (36)
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Theorem 2: Fuzzy sets form a commutative semiring with unity (=4£21)
and zero (= ) under @ (as multiplication) and U (as addition).
The duality holds for U and N. Moreover, fuzzy sets constitute
a commutative semiring with unity (= §) under ¥ (as multiplication)
and u (as addition)., The duality holds for A and . TFuzzy sets
form a lattice ordered semigroup with unity (=J{l) and zero (= @)

under NN, U and A, where M is a semigroup operation. The dualizy

holds for U, N and V.

(III) The Case of Drastic Product (f) and Drastic Sum (U ) Combined
with Algebraic Product ( + ) and Algebraic Sum (+):

Absorption: AA(AB)SA (37)
AM(A+B)eA (38)

Ay (a-B)=24 (39)

AU(a+B)2A (40)

and A-(AMAB)S A (41)

A+ (AUB)G A (42)

A+ (ARAB)2 A (43)

A+ (AUB2A (44)

Distributivity: AA(B-C)2(MAAB) *(AAC) (45)
AR(B+C)e(AMB) + (AAC) (46)
AU(B-Cc)2(uUB) - (AvVo0) (47)
Av(@B+c)ce(auUB) +(aycC) (48)

and A<(BAC)2@A-B)AA-C) (49)
A-(BUC)YE (A B)U (A - C) (50)

A+ (BAC)2(A+B)M (A +C) (51)

A+ (BUC)g (A +B)V (A +C) (52)

Theorem 3: Fuzzy sets do not form such algebraic structures as a

lattice and a semigroup under (\ and 4, Phe same is true of (A, * ),

(U' ') and (w, "’)-
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(IV) TMhe Case of Drastic Product (M) and Drastic Sum () Combined
with Bounded-Product ( ® ) and Bounded-Sum (@ ):

Absorption: AA(AO®B)cCA (53)
AR (A@®B)CA (54)

AU(AOB)2 A (55)

AU (A®B)2A (56)

and AO@(ARAB)g A (57)

AO®(AUuB)g A (58)

A®(ANB)DA (59)

A® (AUB)2A (60)

Distributivity: AA(Aoec)2(AAB) 6 (A ne) (61)
An(BOC)S (AMB) @ (anCc) (62)
AU(BOC)2(AUB)O (AWUc) (63)
AvU(Bec)c (AUuB) e (aAavc) (64)

and A (BAC)2(A06B)A(A0C) (65)

A0 (BUc)£(AeB)yUu (aec) (66)

Ao (BAC)#£(A@eB)A (A @cC) (67)

Ao (BUC)sc(A®eB)U (A @c) (68)

Theorem 4: Fuzzy sets do not constitute such algebraic structures

as a lattice and a semiring under M and @, The same is true of

(A, 0), (U, 0) and (U, 6).

4, New Compositions of Puzzy Relations

We shall briefly investigate new compositions of fuzzy relations
by introducing bounded~product ® and drastic product A into compo-
sitions of fuzzy relations, As is well-~known, the max-min compo- .
sition and max-product composition of fuzzy relations are defined

as follows: Let R be a fuzzy relation U x V and S be a fuzzy rela-

tion in U x W, then we have
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Max-Min Composition:

R o8 < ppoglu,w) = v {pp(u,v) A pS(V.W)} (69)

Max~Product Composition:

RS €5 pglam) = ¥ {pp(e,w) - pgrm ) (70)

In the same way, we can easily define new compositions by

using bounded-product @ and drastic product A in (9).

Max-® Composition:

RB S & ppyglu,w) = ‘\;{pR(u.V) J PS(V,W)} (71)

where
xX0y=0Vv(x+y~1)

Max-A Compositions:

R4S & ppyg(a) = ¥ {pplem) A pglr | (12)

Similarly, we can define a number of new compositions such as
+~-min composition, @-product composition, V-0 composition and so on

by combining v, +, @, V, A, *, © and A,

Example 1l: Let R and S be fuzzy relations such as

2 .8 1 8 .9 .1
R = 09 05 04 ’ S = 1 07 08
3 .9 .1 A .4 1

then we have R o S, R+ S, Ro S and R 4 S in the following.

(8 .7 1] 8 .56 1
RoS=|.8 .9 .5/, Re-S=1{.72 .81 .4
.9 .7 .8 .9 .63 ,72
(8 .5 1] .8 .4 1
Res=|.7 .8 4|, RaAS= [.5 0 .4
.9 .6 .7 .9 0 .1
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As was shown in this example, we obtain in general
RASCRB SCR* S&ERoOS
by virtue of the property of (11) of A, O, *and A,

Example 2: Let R be a fuzzy relation on a real line which represents

"y is approximately equal to v", i,e., "u & V":

pp(w,v) = max(0o, 1 - lu - vl) (73)
Then we obtain
) lu - vl
pRoR(u,v) = max(0, 1 - =)

(1 - 15—5431)2 cee |lu-vlg 2
P‘R‘R(u’v) =
0 eee ju-vlz 2

PRuR(u’v),= max (0, 1 - |u - vl )

max (0, 1 - |u -~ v] )

PRAR(u’v)

Therefore,

RoR2R- R2R, RuR=R4R=R

From these results, we may say that the max-min composition R o R
and max-product composition R * R fit our intuition in the case of
R =%, However, it is noted that the max-® composition and max-A
composition satisfy the transitive law and thus the fuzzy relation R
* which is reflexive and symmetric in nature becomes a fuzzy equivalence
relation (Zadeh, 1971) under each of B and A,

As another example, let us consider a fuzzy relation S which

also represents "u 2« v" and is defined by

pg(u,v) = max (0, 1 - (u-v)?) (74)
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Then we have

, .
Psos(ws7) = max(0, 1 - LB=T)) » po(u,v)
2 2

(1-88230" L ju-vige
PS'S(u’v) =

0 cee Ju=-v|z2

2 pg(u,v)
2

p.SuS(u,v) = max(0, 1 - -(Lz'—lL) = p.s(u,v)
Pgag(@,v) = max(0, 1 - (u - v)%) = pg(u,v)

Namely,

SoSPS*S5SP280825 48 (=28)

Thus, the fuzzy relation S also becomes a fuzzy equivalence relation
under 4,

As in the case of max-min composition "o", we can obtain the
following properties under max-product composition "e", max-@® compo-
sition "e" and max-A:composition "am,

Let R, S and T be fuzzy relations on U, and let ¥¢fv,-, U;"}, then

R¥ (S¥T)=(R*S) 7 (75)
SECT = R*% SGCR% T (76)
R*¥ (sUP)=(R* S) U(R*T) (77)
R*¥ (sNTP)c (R¥ sSYn(rR*T) (78)
IxR=R*1I=R, OX¥R=R*0=0 (79)
(R x 5)¢ = s®x RC ~ (80)

where I and O are identity relation and null relation, respectively,

and Rc stands for the converse of R,
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