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ABSTRACT

_Among the basxc operations which can be performed on fuzzy

sets are the operations of union, 1ntersectlon, complement, algebraic
product and algebraic sum.  In addition to these operations, new
operations called "bounded-sum" and "bounded-difference” were defined
bYuL- A. Zadeh to investigate the fuzzy reasoning which provides
a way of dealing with the reasoning problems which are too complex
for precise solution. . ' h

" This paper investigates the algebraic properties of fuzzy sets
under these new operations of boundedvsum'and bounded~difference
and the properties of fuzzy sets in the case where these new operations
are combined with the well- -known operations of union, interseection,

algebraic product and algebraic sum,
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INTRODUCTION

Aﬁong the well-known operations which caﬁ be performed on fuzzy sets
- are the operations of union, intersection, complement, algebraic product
ana algebraic sum. A number of researches concerning wiéh fuzzy sets and
theirJapplications to automata theory, logic, control, game, topology, pattefn
recognition, integral, linguistics, taxonomy, system, decision making,
information retrieval and so on, have been earnestly investigated by using
" these operations for fuzzy ;ets (1, 23. For example, union, intersection,
"and complémgnt are found in most of papers relating to fuzzy sets. Algebraic
product and algebraic sum are also used in the studies of fuzzy eveﬁts [31,
/ﬁlzzy automataul4], fuzzy logic [5], fuzzy semantics [6] and so on.

In addition to these operations, new operations called "bounded-sum"
and "bounded-difference" are introduced by L. A. Zadeh [7] to investigate
the fuzzy reasoning which provides a way of dealing with the reasoning
problems which are too complex for precise solution.-

This paper investigates the algebraic properties of fuzzy sets under
bounded-sum and bounded-difference as well as the propérties of fuzzy sets
in the case where these new operations are combined with the well-known

. Operations of union, intersection, algebraic product and algebraic sum,
—

FUZZY SETS AND THEIR OPERATIONS

We shall briefly review fuzzy sets and their operatiéns of union,
iﬁtersection, complement, algebraic product, algebraic sum, bounded-sum,
bGunded-difference, and bounded-product which is a dual operation of bounded

“Sum.,

~

EPZZX Sets: A fuzzy set A in a universe of discourse U is characterized by

2 Mmembership function “A which takes the values in the interval (0, 1], i.e.,

LN U (0, 1] (1)
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The value of Mo at u. (€U), UA(u), represents the grade of membership
(grade, for short) of u in A and is a point in [0, 1].

The operations on fuzzy sets A and B are listed as foilows.

Union: AUB <==> MWyp=HaVH 2
Intersection: ANB <==> Hanp = s Mg (3)
Complement: A <==> “i = ] - uA (4)
Algebraic Product: A+ B <==> uA . B = uAuB {5)
Algebraic Sum: A+B <= uA : B = uA + pB - uApB
=1-(1-w) -y | (6)
Bounded-Sum: A®B <==> Y ooo=1A(n +u) n
Bounded-Difference: AS B <==> Piep~ ov (uA - uB) (8)
Bounded-Product: AO®OB <== a0 B =0v (uA + uB-- 1) (9)

where the operations of v, A, +, and - represent max, min, arithmetic sum,

and arithmetic difference, respectively.

ALGEBRAIC PROPERTIES OF FUZZY SETS UNDER VARIOUS KINDS OF OPERATIONS

Y

In this section we shall investigate the algebraic properties of fuzzy
sets under the operations (2)-(9). We shall first review the well-known
properties of fuzzy sets under union (2), intersection (3), complement (4),

algebraic product (5), and algebraic sum (6).

) *
Theorem 1 (Zadeh, 1965): Fuzzy sets in U form a distributive lattice under

U and N, but do not form a Boolean lattice, since A is not the complement of

~

A iIn the lattice sense.

* A set L with two operations v and A satisfying idempotent laws, commutative
laws, associative laws and absorption laws is said to be a lattice. If the

lattice L satisfies distributive laws, then L is a distributive lattice. 1If

the complement laws a v a = I and aA a =0 holds, L is a Boolean lattice.
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Theorem 2: Fuzzy sets also form a unitary commutative semiring with zero
under the operations U and /1.
Proof. This can be shown by letting + = U, x =1, e =Q, and O = & in the

footnote, where Q is a universe of discourse U and ¢ is an empty fuzzy set. .

Theorem 3 (Kaufmann, 1973): Fuzzy sets under the algebralc sum (4) and the

algebraic product (-) do not constitute such algebralc structures as a lattice
. 13 '_

and a semiring. Fuzzy sets, however, form a commutative monoid” under + . -

(or ).

Theorem 4: Fuzzy sets form a unitary (= ) commutative semiring with zero

(= ¢) under U (as addition) and algebraic product +« (as multiplication).

iR

The duality holds for intersection /7(as addition) and algébraié sum ¥+ (as

: te
nultiplication). Fuzzy sets also form a lattice ordered semigroup - with

zero & and unity Q under U, /7 and * . The duality holds for [V, 7 and ¥+ .

[

* A semiring (R,+,x) is a set R with two operations + and x of addition and
multiplication such that + is associative and commutative, and x is associative
. and distributive over +, i.e., .
ax (b+c)=(axb) + (axc) and (a+b) xc=(axc) + (bxc). 'f
A semiring is unitary if x has a unit e, and is commutative if x is commutatxve,

and is a semlrlng with zero if + has an identity O such that O x a =a x O = O.

** A semigroup (S,-) is a set S together with an operation « such that . is

associative, A monoid (or unitary semigroup) is a semigroup with identity

under . . The monoid is called commutative if . is commutative.

*** A lattice L which is a semigroup under * and also satisfies the following

distributive law is called a lattice ordered semigroup and is denoted as L =

L, v, A, *), where v and A are operations-of lub and glb in L, respectively.

The distributive law is

X* (yvz)=(x*y)v (x* z) and (xvy) *z=(x*z)v (y*z)

Yoreover, L = (L, v,A, *) is said to be a lattice ordered semigroup with

Egggx I and zero 0 if the followings are satisfied for any x in L, i.e.,
X voOo=x, X*0=0"*x=0

XxviI=I1I, X * I =1%*yxs=x
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We shall next discuss the algebraic properties of fqzzy sets under
the operations of bounded-sum & (7)), bounded-difference ® (8) which were
defined by zadeh [7]), and bounded-product ¢ (9) which is a new operation
dual to bounded-sum, The new operation of bounded=-product © can be eXpresseq

by using De Morgan's laws to be shown in (40) and (41),

AOB=AGE=A65B (10)

(I) The Case of Bounded-Sum ®, Bounded-Difference © and Bounded~Product 0.

Idempotency: ° A @& A 2 A (11)

A ® A C A (12)

A & A = <I> : (13)

Commutativity: A @@ B = B & A ' (14)
"A © B = B 0 a ‘ (15)

A © B # B & A (16)

Associativity: (A ® B) # C = A @ (B @ C) : (17)
(A © B ©®C = A 0® (B © C) (18)

(A8 B) 8 C € a8 (B o () (19)

As a special case of (19), we have

A ® (A ® B)= ANB (20)
AbsorBtiéni

(i) Case of & and 0: A @ (A © B) 2 A (21)
A O (A ® B) €S 1 (22)

{(ii) Case of ® and o: A ® (A @ B) 2 A (23)
A ® (B & A) = A U B (24)

A & (A ® B) = ¢ (25)

(A e B o’a = & N B (26)

(iii) Case of © and o: A ©® (A 8 B ¢ A (27)
A © (B 8 a) = ¢ . (28)

A e (A ® B) = AN B (29)

(A © B) & A = & (30)
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Distributivity:

(1) Case of ® and O: A® (BOYC)

# (A®@B) O (A®C)  (31)

AO(B®C) #(AOB) @ (AOC) (32)

(ii) Casc of ® and 8: A ® (BOC) 2 (A ® B) © (A ® c) (33)
Ae (B@C)S (AeB) & (AecC) (34)

(B ® d) ©A#(BOA) & (C8A) (35)

(iii) Case of O and : A O (BOC) < (AOGB) & (A OC) (36)
AO (BOC)2(AOB) 0 (A6C) (37)

(BOC) ©A 2(B 8 A) @ (C8R) (38)

De Morcaﬁ's Laws: A ® B = A O B {39)
A0 B = A e B (40)

Furthermore, . A © B = A © B (41)
A © B = A & B (42)

Ao = B.o A (43)
Finally, A ®© B = A 6 B (44)

A ® B = A 0 B (45)

Identities: A & ¢ = A (46)
' A & O = @ (47)

A ©® ¢ = ¢ (48)

A ©® 2 = A (49)

Moreover, A 8 ¢ = A (50)

¢ e A = ¢ ‘ (51)

A e Q =9 (52)

Q e A = A (53)

Complementarity: A ® A = Q (54)
A O A = ¢ (55)

¢S A & A S Q (56)

¢S A 8 A S Q (57)

where % is an empty set and is defined by u¢ = 0, and 2 is a universe of

dizcourse U and is defined by My T 1.
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Remark 1: From (17) and (18) it is found that the operations @ and ©
are associative. Thus we can represent Almhze...@An and AlOAZO...GAn as

+ cen
1A (u +u, + +u )

Yo on o...08 =
15007 FRy 1 M An

u = Ovi{u +yu + ...4+4u - (n-1)]
OA_O...

A ORO...0R A A A,

IfA, =A_ = ... =A (=A4), then we can obtain
1 2 n
Yaoao...on - TN DY,

. U v (1l ~n U;)

ADAO...OA

Remark 2: The operations U, N, over fuzzy sets can be represented by

using &, ©, (and 0), that is, by using (24), (20), (26) and (53). Namely,

A UB = A® (B © A) (58)
A NB = A (A © B) = (A®B)e8Aa (59
A =0 o a ' (60)

It should be noted that @, ©, and © are easily shown not.to be represented

by U, N, and "

ﬁemark 3: Fuzzy sets under ® and © satisfy the complement laws (54)-(55),
though they do not satisfy these laws under U and N, and - and +. Note that
we have 0.5Q§A UAS Q; € AN AC 0.5 under U and N, and 0.750 C A + A C @

¢S A * A S 0.250 under + and - » where 0.5Q is defined as p = 0.511Q = 0.5x

0.5%
From the above property concerning &, ® and 8, we can immediately obtain

the following theorem.

Theorem 5: Fuzzy sets under ® and © do not satisfy the absorption and
distributive laws and hencevdo not.form such algebraic structures as a lattice
and a semiring. The same holds for @ and €, and for @ and 6. Fuzzy sets,
however, form a commutative monoid under @ (or 0); but do not form such a

structure under 6.

Wle shall next deal with the absorption and distributive properties for

fuzzy sets under the operations of bounded-sum &, bounded-difference © and
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bounded-product ® combined with the operations of union U and intersection N,

(II) The Case of Bounded-Sum ®, Bounded-Difference © and Bounded-Product ©

Combined with Union U and Intersection N :

Absorption: A U (A é B) 2 A ' (61)
AN (A o B = a | ©(62)

AU (A @ B = a ' (63)

AN (A © BY € a . .(64)

‘ AU (A & B)Y = p - (65)

A U (B & A) # a (66)

AN (A e B € a (67)

AN (B e A # a (68)

Morcover, A ® (A U B) D> 1; (69)
A ® (AN B 2 A (70)

A © (A U B €& »a (71)

A ® (A N B) € a (72)

A & (A U B) = ¢ (73)

(A U B) @8 A = B & A # A (74)

A 6 (AN B = A e BCS a (75)

'(A N B) ¢ A = ¢ (76)

Distributivity: AU (B @ ¢S (AuU@B @ (AU C) (77)
AN (B & ) <_1_ (A 0 B) & (A N ¢) (78)

A U V(B © C¢) 2 (A U B) @ (A U C) (79)

AN (B9 C 2 (N B o (N ¢ (80)

AU (B 8 C D (A U B) € (A U C) (81)

AN (B8 C) 2 (AN B 6 (AN ¢ (82)

and A ® (B UC = (A ® B U (A @ ) (83)
A ' ® (BN C = (A e B N (A & ©) (84)

A O (B U C = (A @ B)Y U (oA o C) (85)

A ® (BN C = (A®@ B N (a6 (86)
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A 6 (B U C) = (A e BY N (» e @) (87)

A ® (B8 N ¢ = (A & B U (A & C) {88)

(B U C) € A = (B @ aA) U (C ®© Ah) (89)

(8 0 c) e A = (88 A O (c e a ' (90)
Theorem 6: Fuzzy sets satisfy éssociative laws (18), commutative laws (15)

and distributive law (85) under the operations of bounded-product O and

union U, and thus they form a unitary (= () commutative semiring with zero (= ¢)
under 0 (as multiplication) and U (as addition). Dually, fuzzy sets under
the'operdtions of bounded-sum @ (as multiplication) and intersection /) (a:
addition) form a unitary (= ¢) commutaéive semiring with zero (= Q).

Moreover, fuzzy sets under & (as multiplication) and U (as addifion) form

a unitary (= &) commutative semiring. The same holds for O (as multiplication)
and 7l (as addition), where ! becomes a unit element for /) . Furthermore,
fuzzy sets also form a lattice ordered sémig:oup with unity-Q and zero ¢

under U, /land &, where & is a semigroup operation. Dually, they form a

lattice ordered semigroup with unity ¢ and zero Q under /), U and e.

As a generalization of (II), the following formulas can be easily obtained.

(I11) Formulas Obtained as a Generalization of (II):

(AUB)@(CUD)=(AAG>C)U(A@D)U(B@C)U(B.QD) (91)
(AnB)Q-(C{\D)=(A@C)I’\(A&D)ﬂ(B@C)F\(BQD) (92)
(AuUB)® (ANB) =A88B (93)
(AUB)O® (CUD) = (A@CYU(AO®D)UI(BOC) U (BO D) (94)
(ANB) O (CNAD) = (AOC)N (AOD) N (BOC) N (BO D) (95)
(hUB)© (ANB) =A 0B (96)
(hUB)® (CND)=(A6C)U (ABD)U(BOBC)U (BOD) (97)
(AQB)e (CUD) =(Aec)N (AeD N (BeC) N(BOD) (98)
(Aua)e(Ahs)=(AeB)U(BeA)=IA-Bl (99)
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We shall next discuss the absorption and distributive pProperties
under the operations of bounded-sum @, bounded-difference © and bounded-
product © combined with the operations of algebraic product * and algebraic

sum +,

(1Iv) The Case of Bounded-Sum @, Bounded-Difference © and Bounded-Product &

Combined with Algebraic Product + and Algebraic Sum + :

Rbsorption: A - (A ® B & A (100)
A 4+ (A ® B 2 a (101)

A ° (Ao B < a (102) -

a + (A o B)- =2 A (103)

A+ (A e B S A (104)

A - (B & A) € »a (165)

A + (A e B) 2 a (106)

A+ (B e aA) 2 a (107)

and A @ (A - B) 2 A (108)
A ® (A + B) D A (109)

A © (A * B) € & (110)

A ©®© (A + B) € & (111)

A e (A - B) = a B € a (112)

(A - B & A = ¢ | (113)

A ' ® (A + B) = ¢ , (114)

(AW + B e A = A - B (115)

Dicstributivity: A - (B @& C)%S (A - B © (A - C) (116)
A+ (B e S (A4t B e (A + o) (117)

A - (B oC 2 @A . B © (A - ¢ (L8

A+ (B o c) 2 (A f B o (A + 0 (119)

A - (B & C = (A - B e (A - ¢) (120)

A+ (B8 2 (A + B e (A 1 ¢ (121)
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Furthermore, A ® (B C) # (A ©® B) * (A & C) (122)
A e (B % c)' /="' (A ¢ B) ¥+ (» ® C) (123)
A O (B - C # (A @ B) = (a 0 C) (124)
Ao (B +c # (Ao B + (A o0C (125
A ©® (B ° C) 2 (A & B) * (A 8 C) (126)
(B * C) € A # (B & A) * (C e BA) (127)
A e (B 4+ )& (ae B ¥+ (A e 0 (128)
(B + c) @ A ¥ (B 8 A) + (C © A) (129)

From the above property we can easily obtain the following theorem.

Theorem 7: Fuzzy sets under bounded-sum @ and algebraic product - do not
form such algebraic structures as a lattice and a semiring, since they do
not satisfy the distributive laws and the absorption laws. The same is

true of (®, ‘:‘)l e, ), (9, 4')1 (e, ), and e, +).

Remark: Although fuzzy sets do satisfy the distributive law (120) under
® and -+, they do not satisfy the associative law and the commutative law
under € (see (19), (16)) and thus they do not constitute a lattice and a

semiring under these operations.

Finally, we shall list the properties of fuzzy sets under containment

relation & .

NI

(V) Properties of Fuzzy Sets under Cortainment Relation < :
A ® BES A+ BES aAanNgs (130)
A ® B2 A % B2 AU B (131)
A e BS aN B (132)
A= B c& p === A UCS&EBUD (133)
===> A N Cc & B (\ D (134)
===> A - c C B - D (135)
===> A + c €& B %+ D (136)



49

==> A ® CC B @ D

==> A 0 C& B O D

€ B, D& ¢C ===> A 8 C< B © D
A C B <===> A 6 B =

=m=D AN B = A

'CONCLUSTON

We have discussed the algebraic properties of fuzzy séts under the new

operations of bounded-sum, bounded-difference and bounded-product and the

properties of fuzzy sets under these operations combined with the well-known

operations of union, intersection, algebraic product and algebraic sum.

If we introduce the other kinds of operations, say, in many-valued logic

to furzy sets, further fruitful applications of fuzzy sets will be found in

a variety of areas.
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