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ABSTRACT

This paper describes an implementation of a system for fuzzy sets manipulation which is
based on FSTDS (Fuzzy-Set-Theoretic Data Structure), an extended version of Childs™s STDS
(Set-Theorstic Data Structure). The FSTDS language is considercd as a fuzzy-set-theoretically
oriented language which can deal, for example, with ordinary sets, ordinary relations, fuzzy
sets, furzy relations, I-fuzzy sets, level-m fuzzy sets and type-n fuzzy sets. The system
consists of an interpreier, a collection of fuzzy-set operations and the data structure, FSTDS,
for representing fuzzy sets. FSTDS is made up of eight arcas, oamely, the fuzzy-set area,
fuzzy-set representation arez, grade area, grade-tuple area, element area, ¢lement-tuple arca,
fuzzy-sei name area and fuzzy-set operator name arca. The FstDs system, in which 52
fuzzy-set operations are available, is implemented in FORTRAN, and is currently running on a
FACOM 230-458 compulter,

1. INTRODUCTION

In the reat world, there exist many fuzzy things which cannot or need not be
precisely defined. In the past, fuzziness has been studied as vagueness, ambigu-
ity or uncertainty. However, since Zadeh proposed the concept of fuzzy sets in
1965 [1], it has been studied vigorously and applied to various fields such as
automata theory, formal languages, natural languages, logic, patiern recogni-
tion, learning theory, decision making and the mathematical theory of com-
putation [2).

It is well known that ordinary set theory is very useful. Some systems can
deal with ordinary sets—for example, sTos developed by Childs [3,4], seTL by
Schwartz [5-7], and LOREL by Katayama [$].
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sTDS (Set-Theoretic Data Structure) provides a variety of set operations and
is ermmbedded in FORTRAN and MAD. SETL is a set-theoretically oriented language
of very high level. As an example of a primitive operation in SETL, x +y means
the addition of two integers or reals, the union of two sets or the concatenation
of two tuples or two character strings in accordance with the types of x and y.
Only basi¢ operations are available in SETL. LOREL was developed to solve
combinatorial problems (e.g., graphs, automata and formal languages) which
have logical relations among their data. The concept of a set in LOREL,
however, is not the same as that of an ordinary set. It is just that of a linear
list. pAscaL [9] can deal with sets containing a small number of elements by
declaring the variables which have set type.

Since fuzzy sets are considered a generalization of ordinary sets, a system
which can deal with fuzzy sets is much more useful because of the wide
applicability of fuzzy set theory.

In this paper, we describe an implementation of a system for fuzzy sets
manipulation which is based on FsTDS (Fuzzy-Set-Theoretic Data Structure),
an extended version of Childs’s 3sTDS. The FSTDS language is considered as a
fuzzy-set-theoretically oriented langunage which can, for example, deal with
ordinary sets, ordinary relations, fuzzy sets, fuzzy relations, IL-fuzzy sets,
level-m fuzzy sets and type-n fuzzy sets. The system is demonstrated using a
number of examples.

The FsTDS system, in which 52 fuzzy-set operations are available, is imple-
mented in FORTRAN, and i8 currently running on a FACOM 230-458 computer.

2. FUZZY SETS AND FUZZY RELATIONS

We shall make a brief summary of the concept of fuzzy sets and fuzzy
relations which will be needed in later sections.

Intuitively, a fuzzy set is a class with unsharp boundaries, that is, a class in
which the transition from membership to non-membership may be gradual
rather than abrupt.

DeFmiTION 1. A fuzzy ser F in a vniverse of discourse [/ is characterized
by a membership function

pe: U={0, 1] 2.1)

which associates with each element # of L7 a number pp(«) in the interval [0,1]
which represents the grade of membership ( grade, for short) of i in fuzzy set F,
with 0 and 1 denoting non-membership and full membership, respectively. In



FUZZY-SET MANIPULATION SYSTEM 117

the notation of a fuzzy set F, we use

F"‘{ pr(u )/ 1, pe(tis)/ --:FF(”n)/“n} (2.2)
- E pr(8) /vy (23)

where w, i=1,2,...,n, represent the elements of U/,

A fuzzy relation 1s defined as a fuzzy set of the Cartesian product of some
universes of discourse.

DeFpaTION 2. A fuzzy relation R (especially, a binary fuzzy relation) in
UV orirom U to V is characterized by a bivariate membership function

MR Ux V—)I.Og l ]’ (2'4)

where & X ¥V is the Cartesian product of {7 and V. A fuzzy relation Rin UX ¥V
is expressed as

R= { fr 11,01}/ <it1, 01, e (11,02) /<1020, -+ s i (bl un)/<“m9ou>} (2.5)

=3 e (1) /0, (2.6)
¥

where 4, i=1,2,....,m, and v, j=1,2,...,n, represent the elements of L and V,
respectively, and {«,u,> stands for an ordered pair of ; and v, i.e., an element
of UX V.

More generally, an n-ary fuzzy relation R in U, X Uy x -+ X U, is a fuzzy
relation which is characterized by an n-variate membership function ranging
over Uy XUy X--- XU,

Since Zadeh first formulated the concept of fuzzy sets and fuzzy relations,
some extensions have been described, for example, L-fuzzy sets [10] by
Goguen, and level-m fuzzy sets [11] and type-n fuzzy sets [12] by Zadeh.

L-fuzzy sets are a generalization of the membership space from the interval
[0, 1] to a lattice L. The universe of discourse of a level-m fuzzy set may be the
set of level-(m—1) luzzy sets with understanding that level-1 fuzzy sets are
ordinary fuzzy sets. For type-n fuzzy sets,! the values of the membership
functions are type-(n — 1) fuzzy sets of the interval [0, 1] rather than points of
{0,1). Type-1 fuzzy sets are equivalent to ordinary fuzzy sets.

More formally, we have the following definition.

IThe properties of type-2 fuzzy sets are discussed in [13].
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DernITION 3. An L—fuzzy set X, a level-m fuzzy set ¥ (m=1,2,...)and a
type-n fuzzy set £ (n=12,...) in U are characterized by the following
membership functions ., g, and pg, respectively:?

py UL, (2.7)

By 10,110,131 - - 100, 1% >[0,1], (28)
m=1

pz U= [0, 100, 1)1~ 1[0, 1], 29

where L represents a lattice and 4 2 =478 the set of all functions from B to
A.

An L-fuzzy relation, a level-m fuzzy relation and a type-n fuzzy relation are
easily defined by the same generalization of an ordinary fuzzy relation.

We shall now give some ¢xamples of various fuzzy sets,

EXAMPLE 1. Assume that
U={ab,ecd}. (2.10)
Then, we may have a fuzzy sct £ in I as
F={01/a,08/5,09/d} .11
and a fuzzy relation R in &/ X U/ as

R={03/<a,b), 09/{b,d>}. (2.12)

2There is no associative law for exponentiation, thai is,
U ) UP Y,
80 py and p are defined more exactly as

p 10, 11(10, 11t - 4(10, 0410, 11V))- -~ }-(0. 1],

P U—;(. (o). )

10.1]

using parentheses.
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EXAMPLE 2. For U defined in (2,10), we have
X= {(0.1,0.9)/0, {0.8,15/5,{09,05/c}

as an L-fuzzy set’ in U.
For the same U, if two fuzzy sets in U/ are expressed as, say,

¥1={03/4,02/56,09/d},
Y2=1{06/2,0.1/5},
then we would have
Y={06/Y1,0.1/¥2)

as a level-2 fuzzy set in U.
Moreaver, for the same U, we may have a type-2 fuzzy set:

Z = (high /2, middle/b, low/d }
where high, middle and low are assumed to be fuzzy sets in
{0,0.1,02, ...,11 C[%,1]
and, for example, are expressed as follows:
high={1/1,0.8/0.9,04/08},

middle={1/0.5,0.5/06,0.5/04)
and

low={1/0,0.8/0.1,04/0.2}.

31n this example, [. is a lattice [0,1)X[0,1] ordered by

Lapby s lant,y & ay<a, and by < b,

where 2,,¢, 5,85 [0, 1) [n this paper, L-fuzzy sets include only ihe case that L is

l[o,l]x[o,l]x - x[0,1],

i

with the ordered relation

L@ ageey@yy < hubyn by & a,<b, foralli(f=1.2,....m)

where g, and & (i=1,2,...,1) are elements of (0,1},

119

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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3. A FUZZY.SET-THEORETIC DATA STRUCTURE

In this section, we shall describe a Fuzzy-Set-Theoretic Data Structure
(FsTDS) which is an extended version of the Set-Theoretic Data Structure
(stps) of Childs [3,4].

FSTDS is a data structure for represeating fuzzy sets so that they can be
manipulated conveniently and efficiendy by fuzzy-set operators. FSTDS is
composed of eight areas as follows (see Figs. 1-4):

(1) Fuzzy set area (FSA)

(2) Fugzzy set representation area (FSRA)
(3) Grade arca (GA)

(4) Grade-tuple area (GTA)

(5) Element area (EA)

(6) Elemeni=tuple area (ETA)

(7 Fuzzy-sct name area (FSNA)

(8) Fuzzy-sel operator-name area {FSONA)

A fuzzy-set operation, which is represenied by a procedure, accesses fuzzy
scts through the pointers in the fuzzy-set area (FSA). Fuzzy-set operators wall
be discussed in Sec. 5. In what follows, we shall discuss each area of FSTDS in
detail,

(1) Fuzzy-set area (FSA). This arca is a collection of the pointers to the
representations of each fuzzy set and fuzzy relation. Given a pointer in this
area, it is possible to access all information associated with any fuzzy set. Most
fuzzy-set operations which operate on only fuzzy sets have the pointers to this
area as operands, Each data cel® of FSA is a pair of pointers, one to the
fuzzy-set representation area (FSRA), the other to the fuzzy-set name area
(FSNA). Pointers to FSNA are not needed for most fuzzy-set operations, but
they are required for some, such as the output of type-n fuzzy sets.

(2) Fuzzy-set represemiation area (FSRA). This area is a collection of
fuzzy-set representations. A fuzzy-set representation consists of a number »
(n » 0) of grade/element pairs in one fuzzy set,” a grade part which contains »
pointers of grades, and an clement part which has » pointers of elements. For
an ordinary fuzzy set consisting of » grade/element pairs, the element part

4By the term “datz cell,” we mean a basic element of each area regardless of the numbser
of memory locations. Thus coc data ccll may occupy only one or several locations in a real
storage structure.

SWe shall hareafter use the term “fuzzy set” as a generic nmame including not only
ordinary fuzzy set but also ordinary set, L-fuzzy set, kevel-m fuzzy set and type » fuzzy set,
and occasionally even fuzzy relation. The term “fuzzy relation” is used similarly to express
various kinds of fuzzy relations.
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contains n pointers to the element area (EA), and the grade part contams n
pointers to the grade area (GA), corresponding to the element pointer of the
element part. From another point of view, the grade part and the element part
are considered as one grade /element part which has # grade/element pointer
pairs.

The pointer of the element part can be to the element-tuple area (ETA) and
fuzzy-set area (FSA) in the case of a fuzzy relation and a level m fuzzy set,
respectively. On the other hand, the pointer of the grade part can be to the
grade-tuple area (GTA) and FSA for an L-fuzzy set and a type-n fuzzy set,
respectively.

An ordinary set is represented as a special case of an ordinary fuzzy set,
that is, all pointers of the grade part are to 1 in GA.

It should be noted that any elements whose grade values are 0 are omitted
from a fuzzy-sel representation.

(3) Grade area (GA). This area is a collection of the numbers in the interval
[0, 1] which are the values of membership functions.

(4) Grade-tuple area (GTA). The grade-tuple area is a collection of n-tuples
of the values of membership functions for, say, an L-fuzzy set. Each n-tuple
definition consists of the number # {(n> 1, the length of the tuple) and n
pointers which may refer to the grade area (GA) for an ordinary L-fuzzy set,
to the fuzzy-set area (FSA) for an L-type-n fuzzy set® or again to the
grade-tuple area (GTA) for a higher-order L—fuzzy set.*

(5) Element area (EA). The element area is a collection of element names,
that is, all names of elements in the universes of discourse. An element name
may be a character string of an arbitrary length or a real number. In our
system, if the element name can be interpreted as a number, then it is
considered as a real number. Otherwise it is considered to be a character
string. For example, the element names .123, +0.123 and +00.123000 are
equal to each other, but ..123 and ..1230 are not.

(6) Element-tuple area (ETA). This area is a collection of n-tuples of
elements, for example, the elements of an n-ary fuzzy relation. Each a-tuple
definition of this area consists of the number r (# > 1, the length of the tuple)
and » pointers which can refer to the element area (EA) for an ordinary fuzzy
relation, 1o the fuzzy-set area (FSA) for a level-m fuzzy relation or again to the
element-tuple area (ETA) for a higher-order fuzzy relaton.

(7) Fuzzy-set name area {FSNA). This area is a collection of fuzzy-set
names. A fuzzy-set name is implicitly defined by assigning a fuzzy set to it. In
other words, a character string to which a fuzzy set has been once assigned is
considered as a fuzzy-set name, but it is not declared explicitly as a fuzzy-set
name. A fuzzy-set name is considered as a variable whose value is a fuzzy set
rather than a number or a character string. The data cell of this area contains

A more generalized fuzzy set is defined in Definition 4,
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the storage representation of a name as a character string and a pointer to
fuzzy-set area (FSA). This area is used not only in the case where [uzzy set
names are needed by fuzzy-set operations (e.g, output of type-n fuzzy sets),
but also in the case where the interpreter looks for a pointer 10 FSA given a
fuzzy-set name.

(8) Fuzzy-set operator-name aqrea (FSONA) This area is a collection of
fuzzy-set operator names. The data cell of this area has the same structure as
that of the fuzzy-set name area (FSNA) except that a pointer to the fuzzy-set
area (FSA) is in the internal code of the fuzzy-set operator. This area may be
omitted from FsTDS from the point of view that FSTDS is only a representation

of fuzzy sets and fuzzy relations. However, this area is necessary, since it .

facilitates implementation of FsTDs system and gives added flexibility to it.

FSTDS consists of the above eight areas. We shall now present some
examples of FSTDS.

EXAMPLE 3. The fuzzy set F and the fuzzy relation R defined by (2.11) and
(2.12), respectively, in Example 1 are represented by FSTDS in Fig. 1.

EXAMFLE 4. The L-fuzzy set X, the level-2 fuzzy set ¥, and the type-2
fuzzy set Z defined by (2.13), (2.16) and (2.17), respectively, in Example 2 are
represented by FSTDS in Fig. 2, Fig. 3 and Fig. 4, respectively.

Fig. 1. The representation of a fuzzy set F and a fuzzy relation R by FsrDs.
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Fig. 2. The representation of an L-fuzzy set X by FsTDS.
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Fig. 3. The representation of a level-2 Fuzzy set ¥ by FsiDs.
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middle
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Fig. 4. The representation of 2 type-2 fuzzy set Z by FSTDS.

As illustrated in Figs. 1-4, the same grade values in the grade area (GA)
and grade-tuple area (GTA) and the same element values in the element area
(EA) and element-tuple area (ETA) are shared in FSTDS, respectively. But the
common subset is Tot shared as in sTDs. This is because several ordinary sets
can be easily divided into disjoint ones, but it is impossible to divide fuzzy sets
uniquely.

With EsTDS it is possible to represent not only ordinary fuzzy sets, L{uzzy
sets, level-m fuzzy sets and type-n fuzzy sets, but also more complex fuzzy sets
which we call “generalized fuzzy sets.” In a generalized fuzzy set, various kinds
of fuzzy sets defined in the previous section are combined into, e.g., an
L-type-3 fuzzy set, a level-5 type-2 fuzzy relation, or an Llevel-7 type-5 fuzzy
relation.

DEFINITION 4. A generalized fuzzy se¢ W in a universe of discourse U/ is
defined recursively as follows:

(1) An ordinary set U is a generalized fuzzy set in U.

(2) The interval [0, 1] is a generalized fuzzy set in [0,1].

(3) An ordinary fuzzy set in U is a generalized fuzzy set in U,

(@) If G and G,,Gy...., G, are generalized fuzzy sets in [0, 1], then a fuzzy set
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A which is characterized by a membership function
u,;:G—rG.)(G;X'”XG,, (3.1)

is a generalized fuzzy set in [0, 1].
(3) If G, Gy and G, are generalized fuzzy sets in [0, 1], then a fuzzy set A,
characterized by

B, GF > G, (32)
and a fuzzy set 4, characterized by
pA?:G—PGr;z (3.3}

are generalized fuzzy sets in [0, 1].

(6) If £ is a generalized fuzzy set in U and Gy, G,,...,G, are generalized
fuzzy sets in [0, 1), then a fuzzy set 4 characterized by a membership function
as

ﬂj:E—)G]X(}']X"‘ XG,,. (3.4)

is a generalized fuzzy setin I/,
(7) If £ is a generalized fuzzy set in ¢/ and &, and G, are generalized fuzzy
sets in [0, 1), then a fuzzy set 4, characterized by

Ia,: GE>0, (3.5)
and a fuzzy set A, characterized by
Py E~> G (3.6)

are generalized fuzzy sets in U,
(8y All generalized fuzzy sets in U or [0,1] are generated by applying the
above rules.

It should be noted that an L-furzzy set, a level-m fuzzy set and a type-n
fuzzy sct as defined in Definition 3 can be viewed as special cases of
generalized fuzzy sets. For example, an Z—fuzzy set in ¥/ is generated by
applying rule (6) on the condition that £=U and G, =Gy,=---=G,=[0,1]). A
level-2 fuzzy set in U and a type-2 fuzzy set in U are generated by applying
rule (7) on the condition that E= {/ and G, = G,=[0,1].
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1t should also be noted that more generalized fuzzy sets may be defined by
replacing the interval [0,1] by an arbitrary membership space such as a lattice
or semiring. Furthermore, a generalized fuzzy relation can be defined using £
in U, X Uyx++ - XU, rather than in U.

EXAMPLE 5. Let I/ be a universe of discourse expressed by
Um{abcd}.

If fuzzy sets Y1 and Y2 in U and high, middle and low in [0, 1] are defined by
(2.14), (2.15), (2.18), (2.19) and (2.20), respectively, then we may have

W = { Chigh, middle, 1) /<Y1, a7, {middle, low, 0>/Y1, b3,
Clow, high, 0.6) /<¥2, ¢} (3.7)

as a generalized fuzzy set in U X ¥ or, more exactly, as an L-level-2 type-2
fuzzy relation’ in U X U.

FSTDS is general enough to represent more imaginative fuzzy sets than the
ones above. We can define in FsTDS a fuzzy set V such as

V'=(0.1/a, (low, 1/Y1, Chigh, low, 1)/{middle, bigh, 3.56)},  (3.8)

where Y1, high, middle and low are expressed by, say, (2.14), (2.18), (2.19) and
(2.20), respectively. Thus, it is not necessary that all elements, or grades, within
one fuzzy set have the same type.

There are several methods of mapping from FSTDS 10 a storage structure. In
our case, as we implement it in FORTRAN because of its high portability, the
storage structure means what data type in FORTRAN is suitable for FSTDS.
Consequently, we have no choice but to usc arrays as a storage structure. It
seems natural for the data cells of each area 10 occupy contiguous array
components. As for the representation of a whole area, we have choices
depending on how many arrays are required, that is, several small arrays (i.c.,
an array represents one area only), or only onc large array (ic., only onc armay
is partitioned 1o represent all areas), We have decided on one (integer) array
rather than several. For this choice would seem o result in the greatest
flexibility and the most economical use of computer memory.

[t is not 50 casy to give a name specifying exactly the siructure of a generalized fuzzy set.
[n this paper we have no intention of defining more exactly how to specify it.
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One integer array is initially divided into many blocks of the same size.® A
block is occupied by one specific area. If an area demands more storage space,
a new block is supplied to this area and connected to 1t by a pointer.

The merits of this method are that few reallocations of areas are necessary
and no pointers are required for the connection of data cells. It is also a ment
that since most data cells in the same area are contiguous, we can have high
locality of memory references in searching one specific area, so we may attain
high performance even in a paging environment by adjusting the size of block
to that of a page.

We can use FSTDS as a data structure for representing fuzzy sets and fuzzy
relations. But it is somewhat troublesome and a source of error if a user has 1o
manage and manipulate many sorts of pointers in FSTDS. We therefore give a
method by which a user can define and manipulate fuzzy sets and fuzzy
relations without worrying about the pointers in FSTDS. In other words, it is
possible for a2 user to define and manipulate fuzzy sets and fuzzy relations
easily with no attention to their representations in a computer, or even in
FSTDS.

We shall turn our attention in the next section to this method, which may
be considered as a command or a programming language for the manipulation
of fuzzy sets and fuzzy relations.

4, FUZZY-SET-THEORETIC DATA STRUCTURE SYSTEM

In this section, we shall describe the FsTDS language (rsTDSL for short),
which is a programming language which enabies a vser to make use of FSTDS,
and the FSTD8 system, which interprets and executes a program writien in
FSTDSL. The FSTDS system can be considered as an FSTDSL processor.

In FSTDSL, we can write an expression whose general form is similar to that
of a function call in FORTRAN; for example,

opr{opd,,opdy,...,opd,); .1

where opr is a fuzzy-set operator name and opd,, i=1,2,...,n, ate its opérands.
The number of operands is dependent on a fuzzy-set operator (see Table 1).
Each opd, may be either a fuzzy set or a grade/element pair. Since any depth
of nested operations is feasible, the opd, may be again of the form of (4.1)
instead of fuzzy sets.

®We can specify the size of blocks in the head of the FsTDSL program. The default size is
1080 now.
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TADLE 1
Fuzzy-Sct Operators Available in the FSTDs System
Fuzzy-sel operators Hopd Remarks
SET(u, ta... ., 8,)" nal Construct ordinary set
FSET(p /0 2/ s v v s b/ Wk rx0 Construct fuzzy set

ASSIGN(Y,X) 2
UNION(K, X o, X} n>2
INTERSEGTION(X [, X3,--.,.X,)  n»2
PROD(X,,X,,...,X,) n>2
ASUM(X,, X,,.... X,) nal
ADIF(X,, X,.....X,) n»2
BSUM(X,, X, ... X,) np2
BDIF(X,, X;....,.X,) ns2
UNIONA(x)
INTERSECTIONA()
PRODA()

ASUMA(X)

ADIFA()

BSUMA(x)

BDIFA(X)

COMPOSE(R,, Ry, --,R,)
CONVERSE(R)
IMAGE(R, X)
CIMAGE(R, X)
DOMAIN(R)

RANGE(R)

CP(X(, Xy X,)

RS(R, X)

RELATION(X)

b

k]
il = I T R R T e el

b

=

EQ(X,.X;) 2
SUBSET(X,,X,) 2
DISJOINT(Y, . X,,..., X,)

a
¥
[

ELEMENT( j2,/1,.X)

CUTCp /i X)
SOP(p/m X)b
EXP(4/x, X)
BIL(X)

CON(X)

CINT(X)
NORM(X)

CD{X)

#(X)

MAXG(X)
SF(X,K)
GF(X, K)
DLT(XI!XZ! . o!Xn)
PRINT(X,, X, ..., X,)

—_——

- -
WOW ORI e omm e = = e b BB B

Assign X to ¥ (same as ¥V: = X)
Union of X, X5, ..., X,

Intersection of X],Xz, rarg XR
Product of X |, X,,.... X,

Algebraic sum of X, X,..... X,
Algebraic difference of X, X, ..., X,
Bounded sum of X, Xy,..., X,
Bounded difference of X, X,,.... X,

Operate on all fuzzy sets over the
domain nf the operand set x

Composition of Ry, R,,....R,
Converse relation of R
Image of X under R
Converse image of X under R
Domain of R
Range of R
Cariesian product of X, X, ..., X,
Restriction of R to X
Translate teval-m fuzzy set X

to fuzzy relation
Is X, equal to X,?
Is X, a subset of X,?
Are X |, X;,.... X, disjoint from each

other?
Is p /1 an element of X?
WAL p-level set of X)
Scalar operation of g and X
XXAn
Dhlation
Concentration
Contiast intensification
MNormalization of X
Cardinality of X
Number of elements of X
Maximum grade of X
Support fuzzification of X by X
Grade furzification of X by K
Delete X, X5,..., X, from system
Print X, Xp, .., X,
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TABLE |

Fuzzy-Set Operztors Available in the FsTDs System
Fuzzy-set operators #opd Remarks
PRINTB(X, X,,....X )} nxl Print X, X,,..., X, in Boolean type
PRINTS(X . X5....X,) nal Print X |, X,,..., X, in set type
PRINTN(X |, X, .., X)) ral Print X|, X3,..., X, with names
PRINTC{character string) 1 Print character siring
DUMP(a,.a3,....x,) nxl Dump areas in FSTDS
SNAP{a) 1 Print 2]l fuzzy sets
PARA(a, = B, a;= B, nxl Specify the options

- "an - ﬂ")

END{X)° lor0 Ewvaluate X and halt

Definitions of Subscripted Symbols
an element, that is, a real number, a characier string or a fuzzy set, or an s-tuple of them
a grade, that is, a number in the interval [0,1] or a fuzzy set, or an a-luple of them
an expression or a fuzzy set
a fuzzy set or a fuzzy set to be defined
a fuzzy relation
a set of fuzzy sets
an inleger
a real pumber
an alphabetical character
a kernel set
: an vption of the PARA operator

B

AR AN DeNR

*For SET and FSET operators, SET{ ) and FSET( }, i.e., n=0, mean the empiy set.

“For SOP operator, # represents: 1, maximum; 2, minimuin; 3, product; 4, algebraic sum;
%, absclute difference; 6, bounded sum; 7, bounded difference.

For END operator, END can be used for END( ).

In addition to the expression, we may have a statement in which a finite
number of occurrences of {set name): =are followed by the expression (4.1)
that is,

0=ty =+ =y, =mopropd, opdy,...,opd,); (4.2)
where the opr and opd,, i=1,2,...,n, are the same as in (4.1}; v, /=12,...,m,
are set names; and the symbol : = means the assignment operation. The entire

statement (4.2) means that the value of the expression is computed and
assigned to all set names v, ty,...,8,,

The rsTDS system also computes the grades of fuzzy sets for many kinds of
fuzzy-set operations,

Thus, the only things a user need do are to analyze a given problem and to
define and manipulate fuzzy sets to solve it using the fuzzy-set operators
provided in FsTDSL. The fuzzy-set operators available in the FSTDS system are
Just like built-in functions in other programming languapes.
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The PSTDS system has 52 fuzzy-set operations currently available. (S8ee Table
1.} We shall describe fuzzy-set operators in detail in the next section. To
complete this section, we present some simple examples to illustrate FSTDSL.

EXAMPLE 6, In FSTDSL, we can write
U:=3ET(A,B,C,DY,
F:=FSET(0.1/A, 0.8/B, 0.9/Dy,

R:=FSET(0.3/<A,B), 0.9/{B,D>);

to define the ordinary set U/, the fuzzy set F and the Fuzzy relation R in
Example 1. The FSTDS system interprets above statements and sets up FsTDS
shown in Fig. 1. Note that Fig. | does not contain the representation of {/, on
account of limited space.

EXAMPLE 7. We can define easily L—fuzzy sets, level-m sets and type-n
fuzzy sets in FSTDSL.
For the L-fuzzy set defined by (2.13) in Example 2, we need only write
X:=FSET({{0.1,0.9>/A, (0.8,1>/B, {0.9,0>/C});
Level-m fuzzy sets and type-nm fuzzy sels cannot at present be writien in one
statement. Thus, we must define the component fuzzy sets of level-m Fuzzy sets

and type-n fuzzy sets. For example, the level-2 fuzzy set Y defined by (2.16)
can be written in FSTDSL as follows,

Y1:=FSET(0.3/A, 0.2/B, 0.9/D);
Y2:=FSET(0.6/A, 0.1/B),
Y:=FSET(0.6/Y1, 0.1/Y2);
The type-2 fuzzy set Z delined by (2.17) can be writien as
HIGH:=FSET(1/1, 0.8/0.9, 0.4/0.8);
MIDDLE: =FSET(1,/0.5,0.5/0.6, 0.5 /0.4);
LOW:=FSET{1/0, 0.8/0.1, 0.4/0.2)

Z:=FSET(HIGH, A, MIDDLE /B, LOW /DY;
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Note that we must define component fuzzy sets first. Moreover, the higher-

order L—fuzzy sets, the higher-level fuzzy sets and the higher-type fuzzy sets
can be written in the same fashion.

EXAMPLE 8. The generalized fuzzy set W defined by (3.7} and the fuzzy set
¥ by (3.8) can be written in FSTDSL as follows.
First, we define component fuzzy sets:

Y1:=FSET(0.3/A,0.2/8,09/D),
Y2:=FSET(0.6/A, 0.1/B);

HIGH: =FSET(1/1, 0.8/0.9, 0.4/0.8);
MIDDLE: —FSET(1/0.5, 0.5/0.6, 0.5/0.4);

LOW:=FSET(1/0, 0.6/0.1,0.4/0.2);
and now we can define i and V:

W: = FSET((HIGH, MIDDLE, 1) /{¥1,A), {MIDDLE, LOW,0>/(Y1,B),
¢LOW,HIGH,0.6)/{¥2,C));

V:=FSET(0.1/A, {LOW,1>/Y1, CHIGH, LOW, 1> /{MIDDLE, HIGH, 3.56));

EXAMPLE 9. We can represent a furzy directed graph® G shown in Fig. 5
by ESTDSL statements as follows:

V:=SET{X,Y.Z, W),
A:=FSET(0.1/X.Y), 0.7 /Y, 2),0.4/(W. 2>,
1/<W, YD, 0.3/ W), 0.9/ (W, XD);

G:=FSET({V.AD).

A fuzzy graph is discussed in {14] by Rosenfeld,
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Z
Fig. 5. A fuzzy directed graph G.

where the V represents a set of vertices and the A a fuzzy set of directed arcs,
that is, a set of weighted directed arcs, and thus the G represents the entire
fuzzy directed graph G.

EXAMPLE 10, Let X and Y be fuzzy sets in {7 and R a Fuzzy relation from
{ to V. Then, we have

(XUTY) R=(X-RYU(Y°R), (4.3)

where U denotes the union of fuzzy sets and o the composition of fuzzy
relations. But in this case X and ¥ are unary fuzzy relations (i.e., ordinary
fuzzy sets), so Xo R reduces to the image of X under R.

Suppose that X and ¥ are defined by

X={1/a,09/8, 03/c) (44)
and
Y={0.1/a,07/b, 0.9/c}, (4.5)
and R is defined in terms of the relation matrix
a B I3
a1 08 0
R=:[07 1 02|. (4.6)
<0 0501

Then we can write the program as follows:
1 X:=FSET(1/A,0.9/B,0.3/C);
2 Y:=FSET(0.1/A, 0.7/B, 0.9/C);
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3 R:=FSET(1/{A,A}, 0.8/(A,B> 0.7/(B,A>, 1/{B,B},
4 0.2/(B,C>, 0.5/(C,B), 0.1/{C.CO.

5 PRINT(ASSIGN(Z, UNION(X, Y))):

PRINT{MAGE(R. 2));

V:=IMAGE(R, X); W:=IMAGE(R, Y);

PRINT(UNION(/, W));

— 9 END;
and (he execution results of above program are

L= T R -

FSET(1/A,0.9/B,03/Cy XU7Y,
FSET(1/A,09/B,02/C);, {XUY)R,
FSET(1/A,0.9/B,0.2/C),  (XoR)U(Y<R).

EXAMPLE 11. The fuzzy knowledge shown in Fig. 6 is represented in
FSTDSL by the following level-2 type-2 fuzzy set ANIMAL.

LOW: = FSET(1 /0, 0.8/0.1, 0.4/0.2);

MIDDLE: =FSET(1/0.5, 0.5/0.6, 0.5/0.4);

HIGH: =FSET(1/1, 0.8/0.9, 0.4/0.8);

BIRD: =FSET(1 /CANARY, 0.5/BAT);

MAMMAL : = FSET(HIGH/BAT, 0.8/ WHALE);

FISH: = FSET(0.7/WHALE, 1/SALMON);

o ANIMAL: =FSET(MIDDLE/BIRD, HIGH/MAMMAL, LOW /FISH);

ANIMAL

high low

/\/“““\8/ ‘

Fig. 6. An example of fuzzy knowledge.
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The question “What does a BAT belong to7” will be translated inte FsTDSL
statements as

ISA : = CONVERSE(RELATION{ANIMAL));

X:=IMAGE(ISA, SET(BAT));

where RELATION is a fuzzy-set operator by which a level-m fuzzy set is
translated into a fuzzy relaticn, and CONVERSE is that of a converse relation.
Then the output for the above X (i.e., PRINT{X);) is

FSET(0.5/BIRD, HIGH /MAMMAL):

Thus, we have the answer “A BAT belongs to BIRDs with the compatibility 0.5
and 10 MAMMALS with high compatibility™.

As shown in Examples 6-11, F5TDsL has a simple syntax. But it seems very
important that a user should become familiar with many kinds of fuzzy-set
operators. The following should be noted.

First, if one encounters the FSTDSL statement

X:=FSET(0.3/BIRD); @7

one may not know exactly whether the BIRD is a fuzzy-set name (i.e., X is
defined as a level-m fuzzy set) or an element name {i.e., X is defined as an
ordinary fuzzy set). This is evident because when the statement {(4.7) is
interpreted by the PSTDS system, if a fuzzy set has been already assigned to the
character string BIRD, then BIRD is a fuzzy-set name; otherwise it is an
element name.

The reason for this unusuval convention is that it is inconvenient to put a
character string representing an element name in quotation marks'® {eg,
FSET(0.3/'BIRD")). It is very annoying to make a program and punch it using
a lot of quotation marks. In order to overcome, however, the difficulty of .
distinction between a fuzzy-set name and an element name, the user will be
recommended to ensure that fuzzy set names are different from element names
although the same names are permitied. In fact, every problem can be easily
formulated in this fashion and it makes the program very easy to read and
understand even in usual programming languages.

Each fuzzy-set operator has a restriction on the number of operands and the
types'! of operands, and the operands are interpreted in the predefined order.

**Quotation marks are used for another purpose, that is, the separate symbols (e.2../, ¢ >
= ) are rendered inoperative by the use of the quotation marks.

'The meaning of “type” in this context is different from that in “type-» fuzzy set”. Here
we mean whether a given operand is an ordinary set, an ordinary relation, an ordinary fuzzy
set, an ordinary fuzzy relation, an L-fuzzy sct, a level-m fuzzy set, a type-n fuzzy set ete,
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For example, given the statement (4.7), X becomes a fuzzy-set name, since X is
followed by the assignment symbol :=. FSET is interpreted as a fuzzy-set
operator name. The character string 0.3 can be interprated as a number in the
interval [0,1]. As for the character string BIRD, if BIRD has been already
defined as a fuzzy-set name (i.e., BIRD:=.._; has occurred before), then BIRD
is interpreted as a fuzzy-set name; otherwise BIRD is an element name. If an
unexpected number of operands occur, or if their type is imcorrect, the
program goes into an error state. i

Second, the omission of quolation marks causes all space symbols to be
ignored in FSTDSL, s0 a user must use the special symbol # denoting a space if
. it is necessary to output spaces,

Third, an expression of FSTDSL. always has as value a fuzzy set rather than a
number, a truth value or a character string. Se does a statement.

The FSTDS system consists of a simple interpreter, a collection of fuzzy-set
operations and a data structure (FSTDS).

At the present time, the interpreter is designed 10 interpret one FSIDSL
statement at a time and invoke a sequence of mecessary fuzzy-set operations.
Once a fuzzy-set operation is invoked, it sets up or manipulates fuzzy sets in
the data structure FSTDS and returns conirol 1o the interpreter except at the
END operation, and then the interpreter interprets the next statement until the
END operation occurs.

As was shown in Examples 6-11, FSTDSL is designed to have no labels and
no control structures (e.g., IF...THEN...ELSE..., GO TO..., WHILE...DO...
etc.). This is not only so that a FSTDSL processor can be implemented casily,
but also because the FSTDS system has another user interface, that is, the
connection of FSTDSL and FORTRAN. If a user wants to use a control structure,
he may make use of that of FORTRAN. We shall demonstrate this useful facility.

EXAMPLE 12, The program in FSTDSL and FORTRAN given by

1F  PARA(G=1)

2 N=5

3F  LARGE=U=EMPTY

4 DO10J=1,N

5 G=FLOAT(J)/ FLOAT(N)

6F  LARGE=UNION(LARGE, FSET("G /)

7F  U=UNION(U, SET(J)

8 10 CONTINUE

9F  PRINTN(U, LARGE)
10F  NOT_LARGE=ADIF(U,LARGE); PRINTN(NOT L ARGE)
11 STOP
12 END
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results in
U:=FSET(1.0/1,1.0/2,1.0/3,1.0/4,1.0/5);
LARGE: =FSET(0.2/1, 0.4/2,0.6/3,0.8/4, 1.0/5);
NOT_LARGE: =FSET(0.8/1,0.6/2,0.4/3,0.2/4);

FSTDSL can be embedded in FORTRAN as in the above program. In this case,
one must put the character F at the head of an FSTDSL statement (i.e., in the
first column on cards) to differentiate an FSTDSL statement from a FORTRAN
statement, and put one or two exclamation marks (! or ) before a FORTRAN
integer or real variable, respectively, to indicate its value inside an FSTDSL
statement,.

The above program shows how to define a universe of discourse U (i.e., an
ordinary set) and a fuzzy set LARGE, compute the complement'? of LARGE
(i.e., NOT LARGE) and output them. In more detail, we first make an ordinary
set U and a fuzzy set LARGE empty'? (line 3), and then compute a grade value
G of the element J, and add the G/J pair to LARGE and the J to U for
J=1,2,...,5 (from line 4 to 8). Next we output the set U and the fuzzy set
LARGE together with fuzzy-set names (line 9), compute the absolute difference
of LARGE from U (i.e., the complement of LARGE) and output it with the
fuzzy-set name (line 10).

A program written in FSTDSL/FORTRAN is translated into the PORTRAN
program by the FSTDS (ranslator, that is, an FSTDSL statement is expanded into
several GALL statements in FORTRAN, Then they are compiled, linked with
SUBROUTINESs in the library for the interface between FSTDSL and FORTRAN,
and executed.

In order to match the FSTDSL syntax with that of FORTRAN, the FSTDSL
syntax is slightly modified as follows.

First, the prefix symbols ! and !! indicate FORTRAN integer and real
variables, respectively, in FsSIDSL statements. In FSTDSL, for example, the
expression SET(X) represents an ordinary set { X }, while SET(MX} represents
{3.14} it X=3.14.

Second, the end of line (i.e., column 72 for cards) means the end of the
statement. We may, therefore, omit the last semicolon ; of lines. For continua-
tion, instead of this mere omission, we rmust use column 6.

2The complement of a fuzzy set F in a universs of discourse U is defined by
NF= 2 1= pr(w)/ 1,
L

where ; are the elements of I/,
I*EMPTY is predefined in the FSTDS system as the empty fuzzy set. Other such predefined
fuzzy sets are TRUE and FALSE, which represent FSET(1 /1) and FSET(1/0), respectively.

——
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Third, the assignment symbol := can be reduced to the FORTRAN assign-
ment symbol =,

The data are passed from FORTRAN to FSTDSL by the use of the above ! and
11 facilities. Passing them from FSTDSL 10 FORTRAN is not 5o easy, because
FORTRAN cannot deal with even ordinary sets. So we have set up facilities 1o
pass them element by element. Such facilities ate now provided by CAlLing
specific SUBROUTINEs directly in FORTRAN. So there are no changes to FSTDSL
and FORTRAN syntax. Some examples of such SUBROUTINESs are 10 gct each
grade with its type in a specified fuzzy set, to get each element with its type in
a specified fuzzy set and to get the number of elements in a specified fuzzy set.

The connéction of FSTDSL and FORTRAN greatly extends the capability and
the applicability of FstpsL. From an opposite point of view, this allows the
provision in FORTRAN of facilities to define and manipulate fuzzy sets and
furzy relations, and it therefore greatly extends the application area of FOR-
TRAN. Moreover, the connection of FSTnsL and other programming languages
could be easily implemented by writing an FSTDs translator for those lan-
guages.

5, FUZZY-SET OPERATORS IN THE rstps SYSTEM

At present, the FSTDS system provides 32 fuzzy-set operalors for use in
problem solving. Table 1 lists all the fuzzy-set operators currently available.
The definitions of these operations on fuzzy sets and fuzzy relations are briefly
presented in the Appendix. For more detailed discussions, see [1, 2, 10-13, 15,
17-19).

The fuzzy-set operators in the FSTDS system may be classified into the
following eight categories:

(1) Set-construction operators

(2) Assignment operators

(3) Operators on fuzzy sets of the same type

{(4) Operators on fuzzy relations

(5) Relational operators

(6} Other operators on fuzzy sets

(7) Output operators

(8) Operators to debug and control the output format

We shall describe each category with examples in the following,

(1) Set construction operators. In this category there are two operators, SET
and FSET, which construct an ordinary set and a fuzzy set, respectively. The
operator SET takes some elements as operands, while FSET takes some
grade/element pairs.
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For ordinary sets, duplicate elements are united, This is also the case for
fuzzy sets, the grade value being defined as the maximum of the value of the
grades of these elements. Note that the grade /element pair whose grade value
is zero is omitted from the constructed fuzzy set for the operator FSET, Note
also that a fuzzy relation can be defined using the same operator FSET, as
shown in Examples 6, 8, 9 and 10, and other various kinds of fuzzy sets can be
defined using a sequence of the operators SET and FSET,™ as shown in
Examples 7, 8, % and 11.

EXAMPLE 13. As examples of operators SET and FSET, we have
1 8ET(A,B,C);

2 SET(A,C,B,A);
3 FSET(0.1/A, 0.2/B, 0.8/A, 0/D);

4 FSET();
Note that statement | is equivalent to 2, that 3 is equivalent to

FSET(0.8/A, 0.2/B);

and that statement 4 represents the emptly set, which is equivalent to SET() or
the predefined empty set EMPTY.,

(2) Assignment operaiors. The assignment operators are used for assigning a
fuzzy set to a fuzzy-set name. We have : = and ASSIGN as the assignment
operators.

The operator := is used at the top level of nested operations and can be
used for multiple assignment as in (4.2). Note that the operator : = is the only
infix operator at present. The operator ASSIGN is introduced in order to assign
a fuzzy set at an arbitrary depth of nested operations. This operator assigns the
second operand to the first one (e.g., ASSIGN(X, Y) is equivalent to X: =Y). The
value of the operator ASSIGN is the assigned fuzzy set X of ASSIGN(X, Y).

These assignment operations do not change the pointer, but reproduce the
fuzzy-set representation in the fuzzy-set representation area (FSRA) in rstDS.
So a fuzzy set can be updated or redefined independently.

EXAMPLE 14.
1 ASSIGN{ FSET(0.1/A, 0.2/8B)),;

2 Y1:=Y2:=ASSIGN(Y3, X}

3 PRINT(UNION(ASSIGN(Z, Y1), SET(C))):

M At present the nested operators of SET and FSET are not feasible.
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(3y Operators on fuzzy sets of the same type. The operators in this category
operate on more than one fuzzy set of the same type. There are seven
operators, namely, UNIQON, INTERSECTION, PROD (product), ASUM (alge-
braic sum), ADIF (absolute difference), BSUM (bounded sum} and BDIF
{bounded difference).

These operators have as value the fuzzy set obtained by a variety of
operations on grade values for the same elements of operand fuzzy sets, that s,
if the number of operands is two, we have as value the fuzzy set expressed as

> P, G Yo (1) / o1, (5.1
i

—

where A; and 4, are operand fuzzy sets and * is a binary operation on two
grade values for the above operators (e.g., the maximum for UNION, the
mihitmum for INTERSECTION and so on). The grade value for the default
element of an operand fuzzy set is considered as zero, that is, non-membership
in it.

The number of operands is equal to or greater than two. But if it is greater
than two, the first two operands are operated on, and then its result and the
next operand are operated on, and similarly for the remaining operands. Note
that different type fuzzy sets could be operated on by these operators, but the
results would be empty.

EXAMPLE 15, If the fuzzy sets X1 and X2 are expressed as
X1:=FSET(0.1/A,0.2/B,0.3/C);

X2: = FSET( 0.8/8B, 0.9/C, 0.5/D};
~~then the statements

PRINT( UNION(X1,X2) );

PRINT( INTERSECTION(X1,X2) );
PRINT( PROD(X1,X2) );

PRINT( ASUM(X1,X2) );

PRINT( ADIF(X1,X2) );

PRINT( BSUM(X1,X2) );

PRINT( BDIF(X1, X2} );
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result in the output

FSET(0.1/A, 0.8/8, 0.9/C, 0.5/D)
FSET(0.2/B, 0.3/C);

FSET(0.16/8, 0.27/C);

FSET(0.1/A, 0.84/B, 0.93/C, 0.5/D);
FSET(0.1/A, 0.6/8B, 0.6/C, 0.5/D)
FSET(0.1/A, 1/B, 1/C, 0.5/D);

FSET(0.1/A);

In addition to the above operators, the FSTDS system provides operators
whose names have a character A at the end of the above operator names (e.g.,
UNIONA, INTERSECTIONA and so on). These operalors have one operand of
the set of fuzzy sets and operate on fuzzy seis over the domain of the operand
set. For example, assume that

@={A,A45....4.}, (3.2)

where A, i=1,2,...,n, are fuzzy scts; then UNIONA(@) means

U 4 (5.3)
ER-T:
ar
AUAzU -+ LA, (3.4)

These operators are introduced to deal conveniently with the set of fuzzy
sets as the operand, but a fuzzy set of fuzzy sets (i.e., a level 2 fuzzy set) may
occur as an operand of these operators. In such a case, if & 1s expressed as

GI - { !‘ll/A 1z #2/’42! '“9,"11/-'4"} (5.5)

where g, and A, are grade values and fuzzy sets, respectively, then, for example,
UNIONA(&) 1s defined as

U mAA4

A=e

where 4 AA; Is a scalar operation as defined by (A.22) in the Appendix.
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EXAMPLE 16. Let the fuzzy sets X1, X2 and X3, a set XA of these fuzzy sets,
and a level-2 fuzzy set XB be given as follows:

X1:=FSET(0.1/A,0.2/B, 0.3/C);
X2:=FSET( 0.3/B,0.9/C, 0.5/D);
X3:=FSET({0.7 /A, 1.0/C, 0.9/D);
XA = SET(X1, X2, X3);

XB: =FSET({0.1 /X1. 0.6/X2, 1/)(3];
Then the execution results of

PRINT{ UNIONA(XA), UNIONA(XB) ;
PRINT(INTERSECTIONA(XA), INTERSECTIONA(XB) );
PRINT({ PRODA(XA), PRODA(XB) );

PRINT{ ASUMA(XA), ASUMA(XB) );

PRINT{ ADIFA{XA), ADIFA(XB) };

PRINT({ BSUMA(XA), BSUMA(XB) );

FRINT({ BDIFA(XA), BDIFA{XB) );

~-are

FSET(0.7/A, 0.3/B, 1/C, 0.9/D);
FSET(0.7/A, 0.3/B, 1/G, 0.9/D);
FSET(0.3,/C);

FSET(0.1/C);

FSET(0.27,/C).

FSET(0.06/C);

FSET(0.73/A, 0.44/8, 1/C, 0.95/D);
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FSET(0.73/A,0.37/B, 1/C, 0.95/D);
FSET(0.6/A, 0.1/B, 0.4/C, 0.4/D);
FSET(0.6/A, 0.2/B,0.5/C, 0.4/D);
FSET(0.8/A, 0.5/B, 1/C, 1/D);
FSET(0.8/A, 0.4/8B,1/C,1/D);
EMPTY;

EMPTY;

(4) Operators on fuzzy relations, A fuzzy relation can be defined as a fuzzy
set of n-tuples, using a set construction operator FSET. The union, intersection
etc, for fuzzy relations can be obtained by the operators on fuzzy sets of the
same type (UNION, INTERSECTION etc.), respectively. But the operators in
this category involve components of an n-tuple element in fuzzy relations.

We have in this category mine fuzzy-set operators, namely, COMPOSE
(composition of fuzzy relations), CONVERSE (converse relation), IMAGE (im-
age of a fuzzy set under a fuzzy relation), CIMAGE {converse image of a fuzzy
set under a fuzzy relation), DOMAIN (domain of a fuzzy relation), RANGE
(range of a fuzzy relation), CP (Cartesian product of fuzzy sets), RS (restriction
of a fuzzy relation to a fuzzy set) and RELATION (fuzzy relation deduced from
a level-m fuzzy set).

EXAMPLE 17. If we have
R1:= FSET(1/(A,2), 0.6/(A,3), 0.3/(B.2), 0.1/(C,1>, 0.8/{C.3));
R2:=FSET(0.1/¢1,G), 0.8/(1,1>,0.2/¢2,G), 1/<3,H));
XA =FSET(0.1/A,0.9/B, 0.5/C);
X8 =FSET(0.8/1,0.2/2,1.0/3);
then the execution results of
PRINT( COMPOSE(R1,R2), COMPOSE(R2,R1) );
PRINT{ CONVERSE(R1), CONVERSE(R2) );
PRINT( IMAGE(R1, XA), CIMAGE(R1, XB) );
PRINT( DOMAIN(R1), RANGE(R1) );

PRINT{ CP(XA, XB),RS(R1,XA) ),
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are

FSET(0.2/¢A, G, 0.6/<A,HD, 0.2/(B,G), 0.1/{C,G), 0.8/(C,H}, 0.1/(C,1>);

EMPTY;

FSET(1/<2,A), 0.6/<3,A), 0.3/(2,B), 0.1/(1,C}, 0.8/¢3,C));

FSET(0.1/¢G, 1), 0.8/{,1>, 0.2/¢G,2), 1/{H,3})

FSET(0.1/1,0.3/2, 0.5/3);

FSET(0.6/A, 0.2/B, 0.8/C);

FSET(1/A, 0.3/B, 0.8/C);

FSET(0.1/1,1/2, 0.8/3);

FSET(0.1/<A.2, 0.1/<A,3), 0.2/{B,2), 0.5/<C,1, 0.5/<C,3), 0.1/¢A, 1,
0.8/<B,15,0.9/¢B,3),0.2/({C,2));

FSET(0.1/4A, 25, 0.1/<A,3), 0.3/(B,2),0.1/{C,15,0.5/(C,3);

(5} Relational operators, Operators in this category correspond to operators
whose values are True or False in other programming languages (e.g., .EQ,,
GT. and so on in FORTRAN). As the value of an expression in FSTDSL must
always be a fuzzy set, we let these operators take as value a fuzzy set in the
wruth-value set [0, 1]. That is, True and False correspond to FSET(1/1) and
FSET(1/0), respectively. Recall that FSET(1/1) and FSET(1/0) are equivalent
to SET(1) and SET(0), respectively. A user can, however, obtain readable
output by using the output operator PRINTB which outputs character strings
TRUE and FALSE for FSET(1/1) and FSET(1/0), respectively.

In this category, we also have the operators EQ (equality comparison),
SUBSET (fuzzy-set inclusion), DISJOINT (disjoininess) and ELEMENT (fuzzy-
set membership).

It should be noted that the operator ELEMENT can take a value {e.g.,
FSET{1,/0.7} ) other than FSET(1 /1) or FSET(1/0). For example, the value of
the expression ELEMENT(0.6/A, X) is FSET(1/p) if the grade of membership
of the element A in the fuzzy set X is p and p is equal to or greater than 0.5; the
value is FSET(1/0) 1f p is less than 0.6, This will be shown in the next example.

EXAMPLE 18. [If we have fuzzy sets XA, XB and XC defined by
XA:=FSET(0.1/A, 0.2/B);
XB:=FSET(0.2/B, 0.1/A, 0/C);
XG:=FSET(0.5/A, 0.9/B);
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then the executed results of the statements
PRINT{ EQ{XA, XB), EQ(XA,XC) ),
PRINT( SUBSET(XA, XB), SUBSET(XC, XA), SUBSET(EMPTY, XA});
PRINT( DISJOINT(XA, XC), DISJOINT(XB, EMPTY) };

PRINT( ELEMENT(0.8/A, XC), ELEMENT(0.3/B,XC));

are

FSET(1/1);
FSET(1/0);
FSET(1/1);
FSET(1/0);
FSET(1/1);
FSET(1 /0);
FSET(1/1);
FSET(1/0);
FSET(1/0.9),

But if the operator PRINT is replaced by PRINTB in the above statements, the
results will be as follows:

TRUE;
FALSE;
TRUE;
FALSE;
TRUE;
FALSE;
TRUE;
FALSE;

FSET(1/0.9);
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(6) Other operators on fuzzy sets. The operators in this category do not
operate on fuzzy sets of the same type, but on only one fuzzy set or two fuzzy
sets of different types.
~In this category there are the operators CUT, whose value is an a-level set of
a fuzzy set; SOP (scalar operations), EXP (exponentiation), DIL (dilation), CON
{concentration), CINT (contrast intensification) and NORM (normalization),
which operate on grade values of one fuzzy set; CD (cardinality), # (the
number of elements) and MAXG (the maximum grade value) whose values are
fuzzy sets in real numbers, integers and the interval [0,1], respectively; SF
(support fuzzification) and GF (grade fuzzification), which fuzzify a fuzzy set
by a kernel set; and DLT (delete fuzzy sets), which deletes fuzzy sets from the
FSTDS system.

EXAMPLE 19. Given a fuzzy set X as

X: =FSET(1/A, 0.8/B, 0.6/C, 0.4/D);

we have FSTDSL statements as follows;
PRINT(CUT(1 /0.5, X), CUT(0.4/0.7.X) ).
PRINT( SOP(0.6/1, X), SOP(0.5 /3, X), SOP(1/5,X) );
PRINT( EXP(1,/2,X),EXP{0.8/3.6,X) );
PRINT( DIL(X), CON(X), CINT(X) );
PRINT(NORM(X));
PRINT( CD(X), # (X}, MAXG(X) ):
and their outputs:
FSET(1/A,1/B,1/C);
FSET(0.4/A, 0.4/8);
FSET(1/A,0.8/B,0.6/C, 0.6/D);
FSET(0.5/A, 0.4/B, 0.3/C, 0.2/D);
FSET(0.2/B, 0.4/C, 0.6/D);
FSET(1 /A, 0.6399/B, 0.36/C, 0.16/D);

FSET(0.8/A, 0.4478/B, 0.1589/C, 0.0369 /Dj;
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FSET(1/A, 0.8944 /B, 0.7745/C, 0.6324 /D);
FSET(1/A,0.64/B, 0.36/C, 0.16/D);

FSET(1/A, 0.92/B, 0.68/C, 0.32/D);
FSET(1/A, 0.8/8,0.6/C, 0.4/D);
FSET(1/2.8);

FSET(1/4);

FSET(1/1);

EXAMPLE 20. Before we apply the fuzzification operator, we must define a

sPecial set, called a kernel set, which plays the role of a basis set of fuzzifica-

tm;; the case of support fuzzification, a kernel set is defined as a relation

between the elements of a universe of discourse and kemnels. Let the kernels be
as follows:

K1977:=FSET{1,/1977, 0.9/1976, 0.8/1975),
K1976:=FSET(1 /1976, 0.8/1975, 0.6/1974),
K1975;=FSET(1,/1975, 0.7/1974, 0.4 /1973);
Then a kernel set K using the above kernels is defined as
K:=SET({1977,K1977>, (1976,K1976), (1975, K1975>);
If a fuzzy set RECENT is given as
RECENT: =FSET(1 /1977, 0.9/1976, 0.6 /1975);

then we have the following FSTDSL statement to fuzzify the fuzzy set RECENT
by the kernel set K:

MORE_OR_LESS_RECENT: =SF(RECENT,K);
and its output is

FSET(1/1977, 0.9/1976, 0.8/1975, 0.54 /1974, 0.24 /1973);

In the case of grade fuzzification, the kernel set is defined as a relation of
grades and kernels.
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Suppose that kernels G1, G2 and G3 and a kernel set G are as follows:

G1:=FSET(0.8/0.3, 1/0.4, 0.7 /0.5);
G2: =FSET(0.8/0.6,1/0.7,0.7 /0.8),
G3: =FSET(0.8,/0.9, 1/1);
G: =SET({0.4,G1,{0.7,G2}>,{1,G3}),
and a fuzzy set to be fuzzified is
X:=FSET{0.7 /A, 0.8/B, 04/C, 0.7/D, 1/E);
Then the executed result of the FSTDSL statement
PRINT( GF(X,G) );
is the following type-2 fuzzy set:
FSET(G2/A, 0.8/8, G1/C, G2/D, G3/E);

(7) Outpur operators. The operators in this category output ordinary sets,
ordinary relations, ordinary fuzzy sets, ordinary fuzzy relations, L-fuzzy sets,
level-m fuzzy sets, type-n fuzzy sets and more generalized fuzzy sets in various
formats, and output character strings. Each output operator except PRINTC
can output an arbitrary type of fuzzy set. A user need not pay attention to the
type of fuzzy-set output. )

A standard output operator is PRINT, and the other operators are modified
a little for convenience in programming.

PRINTB (print Boolean) outputs character strings TRUE and FALSE for
FSET(1/1) and FSET(1/0), respectively, and outputs fuzzy seis in a similar
way to PRINT for other fuzzy sets (see Example 18).

PRINTS (print set) outputs both ordinary sets and fuzzy sets in the form of
ordinary sets, that is, it outputs only elements whose grade values are 1, but
does not output its grade values. Note that the fuzzy set whose output is
SET(); by PRINTS is not an empty fuzzy set, but the empty fuzzy set is output
as EMPTY even by PRINTS.

PRINTN (print with names) outputs in the same form as PRINT except that
the names of operand fuzzy sets are also output. If the operand is the
expression, *** is output as its name.

PRINTC (print characters) never outputs any fuzzy sets, but only the
character string of the operand.

The value of these operators is the last operand fuzzy set, but that of
PRINTC is the empty set.
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EXAMPLE 21. If we have FSTDSL statements as follows:
PRINTC(EXAMPLES # OF #OUTPUT # OPERATORS /);
PRINT(TRUE); PRINTB(TRUE);
X:=PRINT({ SET(A,B,C) );
PRINTS{ SET(A,B,C));
Y. =PRINTS(FSET(0.1/A,0.2/C,0.3/E) ),
PRINTS( FSET() );
Z:=PRINTN( Y, UNION(X, Y7 );

PRINTC{UNION'(X,YY =) PRINT(2);
then we have the execution results as follows:

EXAMPLES OF QUTPUT OPERATORS
FSET(1/1);

TRUE;

FSET(1/A.1/B, 1/C);

SET(A, B, C);

SET();

EMPTY;

Y=FSET(0.1/A, 0.2/C, 0.3/E);
***=FSET(1/A,1/B,1/C, 0.3/E);

UNION(X, Y)=FSET(1/A, 1/B, 1/C, 0.3 /E);

Note that the symbol / in an operand of PRINTC denotes end of line.
Various kinds of parameters for the output format are specified by PARA
operator in the next category,

—_—



FUZZY-SET MANIPULATION SYSTEM 149

(8) Operators to debug and control the outpd formar. The FSTDS system
provides the operators DUMP, SNAP and PARA for the debugging of FSTDSL
programs.

The DUMP operator dumps some areas in FSTDS in accordance with its
operands only when it is executed. The operands of DUMP are several
alphabetical characters which specify the dumped areas.

The operator SNAP outputs all fuzzy sets that have been defined by the
time it is exccuted. The output form is just like PRINTN,

The PARA operator gives various kinds of information to the FsTDS system,
some of which is very useful in debugging. For example, we can specify
options to dump some areas in FSTDs and output the value of an operator each
time a fuzzy-set operation is completed, and to output the statement to be
intetpreted, as a trace facility.

These options in the PARA operator can be considered as dynamic debug-
ging tools, as opposed to the DUMP and SNAP operators.

The PARA operator is also used for controlling the output format. The
controllable output format is as follows: the first and last columns for lines;
the tength of integer part and decimal fraction part of real number in both
grade and element parts; the length of element name and fuzzy-set name in
element part; and the length of fuzzy set name in grade part. The other oplions
select the input and output devices, rename fuzzy-set operators, output the
execution time of FSTDSL statements in one line, and gutput the information as
shown i1 Fig. 7 on the execution of the END operator.

We have now described the fuzzy set operators available in the FSTDS
system. These operations are implemented by SUBROUTINES in FORTRAN,

We will conclude this section with some examples of the applications of the
FSTDS system to linguistic hedges [13, 16] and approximate reasoning [12, 17,
18}.

EXAMPLE 22. A linguistic hedge such as very, more or less, much, slightly
etc. can be viewed as an operator which operates on the operand fuzzy set. For
example, the linguistic hedges very, more or less, slightly, sort of and preny
were defined by Zadeh [15] and Lakoff [16] as follows:

very x = CON(x), (5.7)
more or less x = DIL{x), (5.8)
slightly x = NORM(x N —CON(x)), (5.9)
sort of x =NORM( GON(CON(x)) N DIL(x)), (5.10)

pretty x = NORM(CINT(x) N —{CINT(CON(x))), 5.1
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where x stands for a fuzzy set, — and 1 mean the complement and the
intersection respectively, and the other operators are the same as those of
FSTDS.

For approximate reasoning, Zadeh has proposed the compositional vile of
inference which is expressed in symbols as

P xisA.
Py: xandyare R. (5.12)
PJ: yiSAOR.

where x and y are object names, 4 is a fuzzy set in U, R is a fuzzy relation in
[/ x ¥V, and A< R is the composition of 4 and R.
If P, is a conditional statement such as

P;: IxisPthenyis Qelseyis . (5.13)

where x and y are object names and P, Q and S are fuzzy sets in U, ¥ and V,
respectively, then it is translated into the relation R of x and y using either the
maximin rule for conditional propesitions [18),

R=PXQUPXS, (5.14)

where x, U and — stand for the Cartesian product, the union and the
complement, respectively, or the arithmetic rule for conditional propositions [18],

R=((PXV)UXNN((PXV)B(UXS)), (3-15)

where x and — are the same as in (5.14), and N, and @ stand for the
intersection and the bounded sum, respectively.

In Fig. 8 we give a program'* in PSTDSL/FORTRAN and its printed results.
First, the program defines U, SMALL, MIDDLE and LARGE. Second, it com-
putes very LARGE, more or less SMALL, slightly SMALL, sort of SMALL and
pretty LARGE, and outputs them. Third, by approximate reasoning it infers the
consequences from the following premises

P;: Xis SMALL.

P,: Xand Y are approximately equal (AE). (5.16)
and
P, Xis SMALL.
P, If X is more or less SMALL then Y is LARGE (3.17)

else Y 1s sort of MIDDLE.

I5The functions S (w}a,b,c) and PF{u:b,¢) in Fig. 8(a) have been defined in {17] by
Zadeh. The function Z (w;a,b,c) is the reflection of 5(w;a,b,¢) about the line u=b,
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and approximate r¢usoning:
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L1 F PRINTC( f THE#MAX TM I NFRULE © /
# AENICA NN |SHEYT RRINTLYA)
4 F PRINTC ¢ STUERBR I THMET [ CHRULE: /
¥ SRHAEIIHYNISHY} PRINTLYB)
47 F END
48 STOP
49 END
C
50 FUNCTION S{UsABCY
21 1IF {U.LEsA} 5=0,0
52 IF (A.LTsll JAND. ULLE,B)Y $m2,0#({U=A2F(C=A))ne2
53 1F (B, LT. .&ND, U,LT.CY Sml, 0= Os{(UeC3/ (Cnh])nsy
L] IF {(C.LE.U} S5=1.0
55 RETURN
56 END
C
- 57 FUNCTION PI{UsB+C}
58 fF (ULE.CY Plag(U,C=R.C=Bs2,0.0)
59 tF (UsoTaC) PIol, 0=8¢U L C+B8/2,04C+8)
&0 RETURN
&1 END
C
62 FUNCTION Z{UsAsRC)
83 AZ=7 ,O%A
&4 225 (A2~ +A L A2=B A2-C)
65 RETURN
gk END

(8a continued)
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to compare the maximin rule and the arithmetic rule for conditional Proposi-
tions.

In this example only a program to compute hedge effects and to cairy out
approximate reasoning is given. However, we could write a program to read
the propositions, say, in the form of (5.16) or (5.17), to analyze their syntax and
compute the hedge effects's using (5.7)—(5.11), to infer the consequences by
approximate reasoning wsing (5.12), (5.14) and (5.15), to output the con-
sequences of the fuzzy sets, and moreover to output these consequences in
linguistic form by linguistic approximation.

6. CONCLUSION

We have described the FSTDS system, in which we can write a program using
the concepts of fuzzy sets and fuzzy relations. This system, in which 52
fuzzy-set operators are available, is implemented in FORTRAN, and is currently
running on a FACOM 230-45S computer. The system requires 116K B, includ-
ing an integer array of size 5000 for FsTns. This is because the current version
of FSIDS is an interpreter implementation, so all SUBROUTINEs of the fuzzy-
set operations must always be linked. These SUBROUTINEs occupy more than
half of the FsTDS system.

There is a way around this difficulty, namely, the implementation of a
compiler version of FSTDs which would read FSTDSL statements and generate a
sequence Of fuzzy-set operations. In the compiler version, the SUBROUTINEs
of unused fuzzy-set operations would not be linked, and the IMEmOry require-
ments for (he execution of an FSTDSL program would therefore be decreased.

The processing time for FSTDSL statements is strongly dependent on the
number of elements of operand fuzzy sets. It takes 6070 msec to consiruct a
fuzzy set of several grade /element pairs and assign it to a fuzzy-set name. This
is because firstly we must manipulale character strings by FORTRAN and search

the grade area (GA) or the element area (EA) etc. to share grades or elements, -

and secondly we must compute the addresses in memory, since ESTDS is
presenied by an amay in FORTRAN. But in comparison with the construction of
fuzzy sets (i.e., the operations of FSET and SET), the other operations, which
manipulate the pointers in FSTDS but search no areas, are rather quickly
executed. This fact is confirmed by use of the system SUBROUTINE CLOCKM
available in FORTRAN on FACOM 230-45S. Rewriting in assembly language
those parts of FsTDS which access FsTDS frequently will very significantly
improve efficiency,

'“More generally, we can use the hedge not and the connectives and and or.
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We can define L fuzzy sets, level-m furzy sets, type-n fuzzy sets, and more
generalized fuzzy sets in FSTDSL, but we camnol manipuiate all of them.
Operation methoads for some of them have been formulated by Goguen [10]
and Zadeh [12], so we are now implementing these facilities.

An FSTDSL program written with prefix operators only is not so readable or
understandable, so we are considering the introduction of infix operators. This
can be done easily by modifyving the interpreter a little.

We have used FsTDS for the representation of fuzzy sets and fuzzy relations,
but the consideration of more suitable representation methods may be needed.

To solve a given problem, we can write a program in FSTDSL using the
concepts of fuzzy sets and fuzzy relations. We can use FSTDSL o construct a
fairly large-scale system, for we need not pay atiention to the representation of
fuzzy sets and Fuzzy relations and the computations of fuzzy-set operations,
and we can describe complex and detailed processing in FORTRAN.

As applications of the FSTDS syst¢m, we are now implementing an ap-
proximate-reasoning system and a fuzzy-graph manipulation system.

FsTDS will find various applications in fields in which we have to deal with
fuzzy information and fuzzy knowledge in naiure.

APPENDIX

We shail briefly present the definitions of various kinds of fuzzy-set opera-
tions. Some operations are n-ary, but we will define them as binary operations
for simplicity.

The symbols g, 4, F and R, with or without subscripts, are used generally to
denote a membership function, an ¢lement of a universe of discourse, a fuzzy
set and a fuzzy relation, respectively. We may use the symbols ¢ and w with or
without subscripts as elements of the other universes of discourse. The symbols
Vv and A denote the maximum and the minimum, respectively, and -, + and
— denote ordinary multiplication, addition and subtraction, respectively.

(1) Union.

FiUF= 3 pr, () ie, () / (A1)
(2) Intersection.

FinFy= 2 pr, () \ite, () / (A2)
(3) Product.

FpFy= E e, (1) tip, () / i (AJ)
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{4) Algebraic sum.

Fi+ Fy= 2 b, (1) + pe, () = e, (0 ir, (1) / 10,

(5) Absolute difference.

F-5= E | e, ()~ e, ()| /%0

where |x| denotes the absolute value of real number x.
(6) Bounded sum.

F@Fr= 3 IA(pr, () + 5, () 10
(7) Bounded difference.

FB6F= 2 OV s, () — g, (1)) / e

(8) Composition.

RieRy= 2 \j/(l‘w. (4> 5) Aitr, (0, W) / oty e .
X4

(%) Converse relation,

R '=3 pa(vu)/ a0
iWf

(10) fmage.
R(F)= 2V (s () Ate (1,9)) /&
J

(11} Converse image,
R7EY= 2V (ke (s 0) Abr (9))/ e

(12) Domain.

domain( R ) = 2 Vg (4 )/ 4
]

(Ad)

(A5)

(A.6)

(AT)

(A8)

(A9)

(A.10)

(A1)

(A12)
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{13) Range.
range(Ry= X \/ pig (4,5,) /1. (A.13)
j 1
(14) Cartesian produci.

FixF= 2 pr, () A Pr, (5) /{80, (A.14)
ind

For n fuzzy sets,
F|XF2X“' )(F:,=

X R (AR (I Apg, ()t U8, (A.15)

Frafgeeee vl

{15) Restriction.

(R, FY=2 (4, 0) A e (1) / <t 03 (A.16)
L

(16) Equality. F, is equal to F, if and only if for all i

pr, (16} = por, (). (A7)
(17} Inclusion. F) is a subset of F, if and only if for all

er, (W) < pr, (). (A.18)

(18) Disjointness. F\,F,,..., F, are disjoint from each other if and only if for
all combinations of i and ; but i<,

FnF=w, (A.19)
where ) is the empty set, and F is the empty set if and only if for all /
pr(4)=0. (A.20)
{19) a-leve! set.

Fom{ula < e () @2
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(20) Scalar operations.
ps F= 2 #"ﬂf‘(ﬂi)/“ﬂ (A.22)

where * denotes an arbitrary binary operation.
{21) Exponentiation.

F=2 (e )Y/ (A23)
where x is a real number.
(22) Dilation.
dil(F)=Fo3= 2 Vir(n) /o (A24)
(23) Concentration.
con( F)y=F1= 2 ()Y . (A25)

(24) Contrast intensification.

2.F? if 0% pp(u)<0.5,

U=(2-(U=FY) it 05< pe(w)<l, (A-26)

cint(F)={

(25) Normalization. F is normal if and only if
\,-/ pr(an) =1, ) (A.26)
and the normalization is defined by

norm(F)= 3 pe(uyf~"/u, (A27)

where jt~! denotes the reciprocal of the maximum grade value in F.
(26) Cardinality.

cd(F)=pp(u )+ pe(a)+ :« +pup(u,). (A.28)
21 Suppor:t juzzification.

SF(FK)= U pre(u) K () (A-25)

i
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where K is a kernel set of kernels K(u,), K(1),..., K (1),

(28) Grade fuzzification.

GF(F,K)= ; K({m)/ (A30)

where X is a kernel set of kernels X{p,), K(p),.... K(s,).

The authors would like to thank Associate Professor J. Toyoda of Osaka

University, who made several helpful suggestions, and Dr. R. Ross, who helped
them refine their English.
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